RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Hairpin-based DNA electrochemical sensor for selective detection of a repetitive and structured target codifying a gliadin fragment

Author:
Martín Fernández, BegoñaUniovi authority; Santos Álvarez, Noemí de losUniovi authority; Lobo Castañón, María JesúsUniovi authority; López Ruiz, BeatrizUniovi authority
Publication date:
2015
Editorial:

Springer Verlag

Publisher version:
http://dx.doi.org/10.1007/s00216-015-8560-2
Citación:
Analytical and Bioanalytical Chemistry, 407(12), p. 3481-3488 (2015); doi:10.1007/s00216-015-8560-2
Descripción física:
p. 3481-3488
Abstract:

High selectivity of genosensors is crucial for certain applications such as those involving species with high genetic variability. This is an unresolved problem when dealing with long target sequences that is further complicated when the target contains repetitive sequence domains. As a model for this situation, the problem of detecting gluten in food with identification of the source is studied. In order to discriminate the specific DNA sequence that encodes the wheat prolamin (gliadin) from rye and barley prolamins, the exquisite selectivity of a rationally designed hairpin capture probe is proposed and compared to a nonstructured capture probe. An electrochemical sandwich assay is proposed, involving capture probes chemisorbed on Au surfaces and biotinylated-signaling probes in combination with streptavidin-peroxidase labeling conjugates. As a result, a genosensor with similar sensitivity to that observed with linear probes but with complete specificity against closely related species was achieved. The surface-attached DNA stem-loop yields a device capable of accurately discriminating wheat DNA from rye and barley with a limit of detection of 1 nM

High selectivity of genosensors is crucial for certain applications such as those involving species with high genetic variability. This is an unresolved problem when dealing with long target sequences that is further complicated when the target contains repetitive sequence domains. As a model for this situation, the problem of detecting gluten in food with identification of the source is studied. In order to discriminate the specific DNA sequence that encodes the wheat prolamin (gliadin) from rye and barley prolamins, the exquisite selectivity of a rationally designed hairpin capture probe is proposed and compared to a nonstructured capture probe. An electrochemical sandwich assay is proposed, involving capture probes chemisorbed on Au surfaces and biotinylated-signaling probes in combination with streptavidin-peroxidase labeling conjugates. As a result, a genosensor with similar sensitivity to that observed with linear probes but with complete specificity against closely related species was achieved. The surface-attached DNA stem-loop yields a device capable of accurately discriminating wheat DNA from rye and barley with a limit of detection of 1 nM

URI:
http://hdl.handle.net/10651/32538
ISSN:
1618-2642; 1618-2650
DOI:
10.1007/s00216-015-8560-2
Patrocinado por:

This work has been cofinanced by Projects CTQ2008-02429/BQU granted to Grupos Consolidados, CTQ2012-31157 and the European Regional Development Fund.

Collections
  • Artículos [37532]
Files in this item
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image