RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Aggregating independent and dependent models to learn multi-label classifiers

Autor(es) y otros:
Montañés Roces, ElenaAutoridad Uniovi; Quevedo Pérez, José RamónAutoridad Uniovi; Coz Velasco, Juan José delAutoridad Uniovi
Fecha de publicación:
2011
Editorial:

Springer

Versión del editor:
http://dx.doi.org/10.1007/978-3-642-23783-6_31
Descripción física:
p. 484-500
Resumen:

The aim of multi-label classi cation is to automatically obtain models able to tag objects with the labels that better describe them. Despite it could seem like any other classi cation task, it is widely known that exploiting the presence of certain correlations between labels helps to improve the classi cation performance. In other words, object descriptions are usually not enough to induce good models, also label information must be taken into account. This paper presents an aggregated approach that combines two groups of classi ers, one assuming independence between labels, and the other considering fully conditional dependence among them. The framework proposed here can be applied not only for multi-label classi cation, but also in multi-label ranking tasks. Experiments carried out over several datasets endorse the superiority of our approach with regard to other methods in terms of some evaluation measures, keeping competitiveness in terms of others

The aim of multi-label classi cation is to automatically obtain models able to tag objects with the labels that better describe them. Despite it could seem like any other classi cation task, it is widely known that exploiting the presence of certain correlations between labels helps to improve the classi cation performance. In other words, object descriptions are usually not enough to induce good models, also label information must be taken into account. This paper presents an aggregated approach that combines two groups of classi ers, one assuming independence between labels, and the other considering fully conditional dependence among them. The framework proposed here can be applied not only for multi-label classi cation, but also in multi-label ranking tasks. Experiments carried out over several datasets endorse the superiority of our approach with regard to other methods in terms of some evaluation measures, keeping competitiveness in terms of others

Descripción:

European Conference, ECML PKDD 2011, Athens, Greece, September 5-9, 2011

URI:
http://hdl.handle.net/10651/11808
ISBN:
9783642237829
Identificador local:

20111143

DOI:
10.1007/978-3-642-23783-6_31
Patrocinado por:

This research has been partially supported by Spanish Ministerio de Ciencia e Innovaci on (MICINN) grant TIN2008-06247

Colecciones
  • Capítulos de libros [6507]
  • Informática [872]
  • Investigaciones y Documentos OpenAIRE [8365]
Ficheros en el ítem
Thumbnail
untranslated
Aggregating independent and dependent models to learn multi-label classifiers.pdf (316.9Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image