RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Learning data structure from classes: A case study applied to population genetics

Author:
Coz Velasco, Juan José delUniovi authority; Díez Peláez, JorgeUniovi authority; Bahamonde Rionda, AntonioUniovi authority; Goyache, Félix
Subject:

Clustering

Hierarchical classification

Pairwise classification

Publication date:
2012
Editorial:

Elsevier

Publisher version:
http://dx.doi.org/10.1016/j.ins.2011.12.022
Citación:
Information Sciences, 193, p. 22–35 ( 2012); doi:10.1016/j.ins.2011.12.022
Abstract:

In most cases, the main goal of machine learning and data mining applications is to obtain good classifiers. However, final users, for instance researchers in other fields, sometimes prefer to infer new knowledge about their domain that may be useful to confirm or reject their hypotheses. This paper presents a learning method that works along these lines, in addition to reporting three interesting applications in the field of population genetics in which the aim is to discover relationships between species or breeds according to their genotypes. The proposed method has two steps: first it builds a hierarchical clustering of the set of classes and then a hierarchical classifier is learned. Both models can be analyzed by experts to extract useful information about their domain. In addition, we propose a new method for learning the hierarchical classifier. By means of a voting scheme employing pairwise binary models constrained by the hierarchical structure, the proposed classifier is computationally more efficient than previous approaches while improving on their performance

In most cases, the main goal of machine learning and data mining applications is to obtain good classifiers. However, final users, for instance researchers in other fields, sometimes prefer to infer new knowledge about their domain that may be useful to confirm or reject their hypotheses. This paper presents a learning method that works along these lines, in addition to reporting three interesting applications in the field of population genetics in which the aim is to discover relationships between species or breeds according to their genotypes. The proposed method has two steps: first it builds a hierarchical clustering of the set of classes and then a hierarchical classifier is learned. Both models can be analyzed by experts to extract useful information about their domain. In addition, we propose a new method for learning the hierarchical classifier. By means of a voting scheme employing pairwise binary models constrained by the hierarchical structure, the proposed classifier is computationally more efficient than previous approaches while improving on their performance

URI:
http://hdl.handle.net/10651/9539
ISSN:
0020-0255
Identificador local:

20120237

DOI:
10.1016/j.ins.2011.12.022
Collections
  • Artículos [37532]
  • Informática [872]
Files in this item
Thumbnail
untranslated
smtpairwise.pdf (980.7Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image