Show simple item record

Orthogonal Frames and Indexed Relations

dc.contributor.authorBalbiani, Philippe
dc.contributor.authorFernández González, Saúl
dc.date.accessioned2025-06-16T10:03:19Z
dc.date.available2025-06-16T10:03:19Z
dc.date.issued2021
dc.identifier.citationBalbiani, P., Fernández González, S. (2021). Orthogonal Frames and Indexed Relations. In: Silva, A., Wassermann, R., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2021. Lecture Notes in Computer Science, vol 13038. Springer, Cham. https://doi.org/10.1007/978-3-030-88853-4_14spa
dc.identifier.isbn978-3-030-88853-4
dc.identifier.urihttps://hdl.handle.net/10651/79255
dc.descriptionInternational Workshop on Logic, Language, Information, and Computation, WoLLIC (27th. 2021. Virtual Event)
dc.description.abstractWe define and study the notion of an indexed frame. This is a bi-dimensional structure consisting of a Cartesian product equipped with relations which only relate pairs if they coincide in one of their components. We show that these structures are quite ubiquitous in modal logic, showing up in the literature as products of Kripke frames, subset spaces, or temporal frames for STIT logics. We show that indexed frames are completely characterised by their ‘orthogonal’ relations, and we provide their sound and complete logic. Using these ‘orthogonality’ results, we provide necessary and sufficient conditions for an arbitrary Kripke frame to be isomorphic to certain well-known bi-dimensional structures.spa
dc.language.isospaspa
dc.relation.ispartofLogic, Language, Information, and Computation. WoLLIC 2021. Lecture Notes in Computer Science, vol 13038spa
dc.relation.ispartofseriesLecture Notes in Computer Science;13038
dc.rights© 2021 Springer Nature Switzerland AG
dc.subjectLogicspa
dc.subjectDynamic Epistemic Logicspa
dc.titleOrthogonal Frames and Indexed Relationsspa
dc.typeconference outputspa
dc.identifier.doi10.1007/978-3-030-88853-4_14
dc.type.hasVersionAMspa


Files in this item

untranslated

This item appears in the following Collection(s)

Show simple item record