RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Producción científica no UniOvi
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Producción científica no UniOvi
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Orthogonal Frames and Indexed Relations

Autor(es) y otros:
Balbiani, Philippe; Fernández González, Saúl
Palabra(s) clave:

Logic

Dynamic Epistemic Logic

Fecha de publicación:
2021
Citación:
Balbiani, P., Fernández González, S. (2021). Orthogonal Frames and Indexed Relations. In: Silva, A., Wassermann, R., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2021. Lecture Notes in Computer Science, vol 13038. Springer, Cham. https://doi.org/10.1007/978-3-030-88853-4_14
Serie:

Lecture Notes in Computer Science;13038

Resumen:

We define and study the notion of an indexed frame. This is a bi-dimensional structure consisting of a Cartesian product equipped with relations which only relate pairs if they coincide in one of their components. We show that these structures are quite ubiquitous in modal logic, showing up in the literature as products of Kripke frames, subset spaces, or temporal frames for STIT logics. We show that indexed frames are completely characterised by their ‘orthogonal’ relations, and we provide their sound and complete logic. Using these ‘orthogonality’ results, we provide necessary and sufficient conditions for an arbitrary Kripke frame to be isomorphic to certain well-known bi-dimensional structures.

We define and study the notion of an indexed frame. This is a bi-dimensional structure consisting of a Cartesian product equipped with relations which only relate pairs if they coincide in one of their components. We show that these structures are quite ubiquitous in modal logic, showing up in the literature as products of Kripke frames, subset spaces, or temporal frames for STIT logics. We show that indexed frames are completely characterised by their ‘orthogonal’ relations, and we provide their sound and complete logic. Using these ‘orthogonality’ results, we provide necessary and sufficient conditions for an arbitrary Kripke frame to be isomorphic to certain well-known bi-dimensional structures.

Descripción:

International Workshop on Logic, Language, Information, and Computation, WoLLIC (27th. 2021. Virtual Event)

URI:
https://hdl.handle.net/10651/79255
ISBN:
978-3-030-88853-4
DOI:
10.1007/978-3-030-88853-4_14
Colecciones
  • Producción científica no UniOvi [183]
Ficheros en el ítem
untranslated
Postprint (407.6Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image