RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Producción científica no UniOvi
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Producción científica no UniOvi
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Orthogonal Frames and Indexed Relations

Author:
Balbiani, Philippe; Fernández González, Saúl
Subject:

Logic

Dynamic Epistemic Logic

Publication date:
2021
Citación:
Balbiani, P., Fernández González, S. (2021). Orthogonal Frames and Indexed Relations. In: Silva, A., Wassermann, R., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2021. Lecture Notes in Computer Science, vol 13038. Springer, Cham. https://doi.org/10.1007/978-3-030-88853-4_14
Serie:

Lecture Notes in Computer Science;13038

Abstract:

We define and study the notion of an indexed frame. This is a bi-dimensional structure consisting of a Cartesian product equipped with relations which only relate pairs if they coincide in one of their components. We show that these structures are quite ubiquitous in modal logic, showing up in the literature as products of Kripke frames, subset spaces, or temporal frames for STIT logics. We show that indexed frames are completely characterised by their ‘orthogonal’ relations, and we provide their sound and complete logic. Using these ‘orthogonality’ results, we provide necessary and sufficient conditions for an arbitrary Kripke frame to be isomorphic to certain well-known bi-dimensional structures.

We define and study the notion of an indexed frame. This is a bi-dimensional structure consisting of a Cartesian product equipped with relations which only relate pairs if they coincide in one of their components. We show that these structures are quite ubiquitous in modal logic, showing up in the literature as products of Kripke frames, subset spaces, or temporal frames for STIT logics. We show that indexed frames are completely characterised by their ‘orthogonal’ relations, and we provide their sound and complete logic. Using these ‘orthogonality’ results, we provide necessary and sufficient conditions for an arbitrary Kripke frame to be isomorphic to certain well-known bi-dimensional structures.

Description:

International Workshop on Logic, Language, Information, and Computation, WoLLIC (27th. 2021. Virtual Event)

URI:
https://hdl.handle.net/10651/79255
ISBN:
978-3-030-88853-4
DOI:
10.1007/978-3-030-88853-4_14
Collections
  • Producción científica no UniOvi [183]
Files in this item
untranslated
Postprint (407.6Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image