RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

A semi-dependent decomposition approach to learn hierarchical classifiers

Autor(es) y otros:
Díez Peláez, JorgeAutoridad Uniovi; Coz Velasco, Juan José delAutoridad Uniovi; Bahamonde Rionda, AntonioAutoridad Uniovi
Palabra(s) clave:

Hierarchical classification

Multi-label learning

Structured output classification

Cost-sensitive learning

Support vector machines

Fecha de publicación:
2010
Editorial:

Elsevier

Versión del editor:
http://dx.doi.org/10.1016/j.patcog.2010.06.001
Citación:
Pattern Recognition, 43(11), p. 3795-3804 (2010); doi:10.1016/j.patcog.2010.06.001
Descripción física:
p. 3795-3804
Resumen:

In hierarchical classification, classes are arranged in a hierarchy represented by a tree or a forest, and each example is labeled with a set of classes located on paths from roots to leaves or internal nodes. In other words, both multiple and partial paths are allowed. A straightforward approach to learn a hierarchical classifier, usually used as a baseline method, consists in learning one binary classifier for each node of the hierarchy; the hierarchical classifier is then obtained using a top-down evaluation procedure. The main drawback of this na¨ıve approach is that these binary classifiers are constructed independently, when it is clear that there are dependencies between them that are motivated by the hierarchy and the evaluation procedure employed. In this paper, we present a new decomposition method in which each node classifier is built taking into account other classifiers, its descendants, and the loss function used to measure the goodness of hierarchical classifiers. Following a bottom-up learning strategy, the idea is to optimize the loss function at every subtree assuming that all classifiers are known except the one at the root. Experimental results show that the proposed approach has accuracies comparable to state-of-the-art hierarchical algorithms and is better than the na¨ıve baseline method described above. Moreover, the benefits of our proposal include the possibility of parallel implementations, as well as the use of all available well-known techniques to tune binary classification SVMs

In hierarchical classification, classes are arranged in a hierarchy represented by a tree or a forest, and each example is labeled with a set of classes located on paths from roots to leaves or internal nodes. In other words, both multiple and partial paths are allowed. A straightforward approach to learn a hierarchical classifier, usually used as a baseline method, consists in learning one binary classifier for each node of the hierarchy; the hierarchical classifier is then obtained using a top-down evaluation procedure. The main drawback of this na¨ıve approach is that these binary classifiers are constructed independently, when it is clear that there are dependencies between them that are motivated by the hierarchy and the evaluation procedure employed. In this paper, we present a new decomposition method in which each node classifier is built taking into account other classifiers, its descendants, and the loss function used to measure the goodness of hierarchical classifiers. Following a bottom-up learning strategy, the idea is to optimize the loss function at every subtree assuming that all classifiers are known except the one at the root. Experimental results show that the proposed approach has accuracies comparable to state-of-the-art hierarchical algorithms and is better than the na¨ıve baseline method described above. Moreover, the benefits of our proposal include the possibility of parallel implementations, as well as the use of all available well-known techniques to tune binary classification SVMs

URI:
http://hdl.handle.net/10651/7538
ISSN:
0031-3203
Identificador local:

20100287

DOI:
10.1016/j.patcog.2010.06.001
Colecciones
  • Artículos [37544]
  • Informática [875]
Ficheros en el ítem
Thumbnail
untranslated
hsvm-draft.pdf (262.8Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image