RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Performance evaluation of 2D vs 4D surrogate models of reflectarray unit cells based on support vector regression

Autor(es) y otros:
Rodriguez Prado, Daniel; López Fernández, Jesús AlbertoAutoridad Uniovi; Arrebola Baena, ManuelAutoridad Uniovi
Palabra(s) clave:

machine learning

surrogate model

support vector regression (SVR)

angle of incidence

reflectarray antenna

Fecha de publicación:
2021-03
Descripción física:
5 p.
Resumen:

Surrogate models of reflectarray unit cells are usually generated employing a number of input variables such as geometrical features of the cell, frequency and angles of incidence. Here we show how surrogate models based on support vector regression can be improved by removing their dependence on the angle of incidence. This is done by grouping the reflectarray elements under a relatively small set of incidence angles. Thus, instead of generating models with the angles of incidence as input variables, models are obtained per angle of incidence pair, reducing dimensionality to improve their performance without significant impact on the reflectarray analysis accuracy.

Surrogate models of reflectarray unit cells are usually generated employing a number of input variables such as geometrical features of the cell, frequency and angles of incidence. Here we show how surrogate models based on support vector regression can be improved by removing their dependence on the angle of incidence. This is done by grouping the reflectarray elements under a relatively small set of incidence angles. Thus, instead of generating models with the angles of incidence as input variables, models are obtained per angle of incidence pair, reducing dimensionality to improve their performance without significant impact on the reflectarray analysis accuracy.

Descripción:

European Conference on Antennas and Propagation, EuCAP 2021 (15th. 2021. Düsseldorf, Germany)

URI:
http://hdl.handle.net/10651/65719
Patrocinado por:

This work was supported in part by the Ministerio de Ciencia, Innovación y Universidades under projects TEC2017-86619-R (ARTEINE) and IJC2018-035696-I; by the Ministerio de Economía, Industria y Competitividad under project TEC2016-75103-C2-1-R (MYRADA); by the Gobierno del Principado de Asturias/FEDER under Project GRUPIN-IDI/2018/000191.

Colecciones
  • Ingeniería Eléctrica, Electrónica, de Comunicaciones y de Sistemas [1086]
  • Investigaciones y Documentos OpenAIRE [8370]
  • Ponencias, Discursos y Conferencias [4230]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (393.1Kb)
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image