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Abstract—Surrogate models of reflectarray unit cells are usu-
ally generated employing a number of input variables such as
geometrical features of the cell, frequency and angles of incidence.
Here we show how surrogate models based on support vector
regression can be improved by removing their dependence on
the angle of incidence. This is done by grouping the reflectarray
elements under a relatively small set of incidence angles. Thus,
instead of generating models with the angles of incidence as
input variables, models are obtained per angle of incidence pair,
reducing dimensionality to improve their performance without
significant impact on the reflectarray analysis accuracy.

Index Terms—Machine learning, surrogate model, support
vector regression (SVR), angle of incidence, reflectarray antenna

I. INTRODUCTION

A common approach in the literature when generating
surrogate models of reflectarray unit cells is to include many
input variables such as the geometric features, frequency and
angles of incidence [1], [2]. However, as the dimensionality
of the model is increased, the number of required samples
to maintain a constant sample density increases exponentially.
This means that for a higher input space dimensionality, the
workload to obtain the surrogate model will be greater.

A strategy to reduce the dimensionality of the surrogate
models consists in grouping the reflectarray elements un-
der a reduced set of the angles of incidence (𝜃, 𝜑). Then,
surrogate models of the reflection coefficients are generated
per (𝜃, 𝜑) pair, effectively reducing the dimensionality of the
model in two with regard to the aforementioned approach.
This approach has already been used [3] for the design and
optimization of reflectarray antennas. However, both method-
ologies have not being compared in terms of accuracy and
efficiency. Indeed, although reducing the dimensionality of the
surrogate model may translate into a more efficient workload,
the discretization of the angles of incidence introduces a
distortion in the radiation pattern.

In this work, we compare the two methodologies regarding
the use of the angles of incidence in surrogate models using
support vector regression (SVR). On the one hand, we generate
models of the reflection coefficients considering two geomet-
rical features of a unit cell plus the two angles of incidence,
obtaining 4D SVR models. On the other hand, given a set of
angles of incidence (𝜃, 𝜑), we generate models per (𝜃, 𝜑) pair
using as input variables the same two geometrical features as

in the previous case, obtaining 2D SVR models. The 4D and
2D SVRs models will be compared in terms of efficiency and
accuracy at the model and antenna analysis levels.

II. PROBLEM STATEMENT

A. Introduction

We consider a flat reflectarray comprised of 𝐾 element,
whose matrix of reflection coefficients is:

R𝑘 =

(
𝜌𝑥𝑥,𝑘 𝜌𝑥𝑦,𝑘

𝜌𝑦𝑥,𝑘 𝜌𝑦𝑦,𝑘

)
(1)

with 𝑘 = 1, 2, . . . , 𝐾 , where 𝜌𝑥𝑥 , 𝜌𝑦𝑦 are known as direct
coefficients and 𝜌𝑥𝑦 , 𝜌𝑦𝑥 are the cross-coefficients. A correct
characterization of both copolar and crosspolar far fields
requires the full modelling of the four coefficients in (1). The
coefficients are obtained with the full-wave analysis method
based on local periodicity (FW-LP) described in [4].

These coefficients depend on the geometrical features of the
unit cell, substrate characteristics, frequency of operation and
angles of incidence. For this work, we will employ a unit cell
consisting in two sets of four dipoles shifted half a period
from one another. The unit cell, substrate and frequency are
detailed in [3]. The length of the dipoles of each set will be
proportional, thus obtaining two geometrical features named
as 𝑇𝑥 and 𝑇𝑦 . Grouping these variables with the components
of the angle of incidence (𝜃, 𝜑), we obtain a vector of the
input variables to the 4D SVR models, ®𝑥 = (𝑇𝑥 , 𝑇𝑦 , 𝜃, 𝜑). The
input variables for the 2D models are ®𝑥 = (𝑇𝑥 , 𝑇𝑦).

B. Support Vector Regression Modelling

The process of surrogate modelling based on SVR is based
on a cross-validation procedure using an efficient grid search
and it is detailed in [5]. Here we will review the basic concepts.

We consider a set of 𝑁 inputs (®𝑥𝑖 ∈ 𝜒 ⊆ R𝐿 , 𝐿 = 2, 4) and
outputs (𝜌𝑖 ∈ R), 𝑇 = {®𝑥𝑖 , 𝜌𝑖}𝑖=1,...,𝑁 , to obtain a function 𝑓
that estimates the values of 𝜌 for any new input vector ®𝑥 ∈ 𝜒.
In this context, 𝜌𝑖 represents either the real or imaginary parts
of any of the reflection coefficients in (1), or the magnitude of
the direct coefficients. By following the procedure described
in [5], the data set 𝑇 is divided into three disjoint subsets for
training (with 𝑁𝑟 ≤ 0.7𝑁 samples), validation (with 𝑁𝑣 =
0.15𝑁 samples) and testing (with 𝑁𝑡 = 0.15𝑁 samples).
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Fig. 1. Total training time, 𝑡train (s), vs. the percentage of training patterns
with respect to the total number of samples, 𝑁𝑟/𝑁 · 100 (%), for both the
2D and 4D SVRs. 𝑁 for 4D SVR and 2D SVR #1 is 65 000, while for 2D
SVR #2 is 190 000.

In order to evaluate the accuracy of the surrogate model,
the following relative error is employed:

RESVR = 20 log10

( ‖ ®𝑒‖
‖ ®𝜌‖

)
(dB), (2)

where ®𝜌 = (𝜌1, 𝜌2, . . . , 𝜌𝑀 ) is a vector of the actual output
of the FW-LP, and ®𝑒 = (𝑒1, 𝑒2, . . . , 𝑒𝑀 ) is a vector of the
difference between the predicted output of the SVR and the
FW-LP output, i.e., 𝑒𝑖 = 𝜌𝑖 − 𝑓 (®𝑥𝑖), 𝑖 = 1, 2, . . . , 𝑀 .

To assess the effect of the discretization of (𝜃, 𝜑) at the
antenna level, we define the following relative error:

REFF = 100 · ‖𝐺FW-LP − 𝐺SVR‖
‖𝐺FW-LP‖ (%), (3)

where 𝐺 is either the copolar or the crosspolar gain pattern,
which was obtained either analysing the antenna with the FW-
LP and the real angles of incidence for each element, or by
estimating (1) with the SVR and a reduced set of angles.

To characterize the matrix of reflection coefficients in (1) we
employ ten models: four for the real part of each coefficient,
another four for the imaginary parts, and two more for the
magnitude of the direct coefficients. Since the 4D SVR in-
cludes the angles of incidence as input variables, we only need
10 surrogate models to characterize 𝑅𝑘 ,∀𝑘 = 1, . . . , 𝐾 . On the
other hand, for the 2D SVR we need 10𝑀𝑎 surrogate models,
where 𝑀𝑎 is the total number of (𝜃, 𝜑) pairs (𝑀𝑎 ≤ 𝐾).

III. CELL MODELLING PERFORMANCE

In this section, the cell modelling performance of the 4D and
2D SVRs is assessed by analysing the training performance
of each approach and the achieved accuracy in the prediction
of the reflection coefficients.

A. Training Performance

The training performance will be measured in terms of time
cost and accuracy over the test set with the relative error given
by (2). For the 4D SVR we consider a total of 𝑁 = 65 000
samples, divided into three sets as described in Section II.C.
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Fig. 2. Average relative test error, RESVR (dB), of the reflection coefficients
vs. the percentage of training patterns with respect to the total number of
samples, 𝑁𝑟/𝑁 · 100 (%), for both the 2D and 4D SVRs. (a) Magnitude
of the direct coefficients, and (b) real and imaginary parts of the direct and
cross-coefficients. 𝑁 for 4D SVR and 2D SVR #1 is 65 000, while for 2D
SVR #2 is 190 000.

For the 2D SVR will employ two different discretizations, with
𝑀𝑎,#1 = 26 and 𝑀𝑎,#2 = 76, considering in each case 2 500
samples per (𝜃, 𝜑) pair, giving a total of 𝑁#1 = 65 000 and
𝑁#2 = 190 000 samples.

Fig. 1 shows the total time training cost of the 4D and
2D SVRs. This training time is the sum of all the training
time of the 10 SVR models for the 4D case and of the 10𝑀𝑎

models for the 2D SVRs. As it can be seen, the training cost
of the 4D SVR is significantly higher than training cost of the
2D SVRs. This is expected if we take into account how the
training time depends on the number of training samples 𝑁𝑟 .
For the usual training strategies in SVR, including the LibSVM
employed in this work [6], the time complexity varies between
O (

𝑁2
𝑟

)
and O (

𝑁3
𝑟

)
[7]. Thus, training several 2D SVRs is

more computationally efficient than its 4D counterpart.
Fig. 2(a) plots the average value of the relative test error

given by (2) of the direct coefficients magnitude, for both
2D and 4D SVRs, versus the percentage of training samples.
Similarly, Fig. 2(b) plots the average relative error of the real
and imaginary parts of the reflection coefficients. They show
that the relative error rapidly decreases with the number of



Table I
AVERAGE RELATIVE ERROR OVER THE TEST SET AND TRAINING TIME OF THE SVR MODEL WITH 𝑁𝑟 = 0.7𝑁 FOR EACH OUTPUT VARIABLE.

𝑁 FOR 4D SVR AND 2D SVR #1 IS 65 000, WHILE FOR 2D SVR #2 IS 190 000.

Approach Variable |𝜌𝑥𝑥 |
��𝜌𝑦𝑦 �� Re{𝜌𝑥𝑥 } Im{𝜌𝑥𝑥 } Re

{
𝜌𝑥𝑦

}
Im

{
𝜌𝑥𝑦

}
Re

{
𝜌𝑦𝑥

}
Im

{
𝜌𝑦𝑥

}
Re

{
𝜌𝑦𝑦

}
Im

{
𝜌𝑦𝑦

}
2D (#1) RESVR (dB) −81.7 −82.0 −38.1 −38.5 −39.2 −38.6 −38.3 −38.4 −38.6 −38.7
2D (#2) RESVR (dB) −82.4 −82.5 −38.1 −38.5 −39.2 −38.7 −38.2 −38.3 −38.6 −38.7
4D RESVR (dB) −74.7 −74.8 −36.5 −35.6 −35.3 −32.7 −34.9 −33.5 −36.7 −35.8
2D (#1) 𝑡train (s) 645 689 1 019 1 027 916 978 990 1 192 838 961
2D (#2) 𝑡train (s) 1 833 2 122 3 067 3 175 2 799 3 044 2 985 3 586 2 457 2 823
4D 𝑡train (s) 133 337 108 833 199 099 212 514 79 121 197 275 125 940 194 132 171 677 139 412

training samples until the sample percentage reaches 30%.
This effect is clearer in the 2D cases. An average relative error
lower than −30 dB ensures a high degree of accuracy between
the SVR-based model and the FW-LP simulations. In light of
the above considerations, a good trade-off between training
time and relative error may be achieved for 𝑁𝑟 = 0.3𝑁 .

Table I summarizes the results for both training time cost
and average relative error over the test set, for all the estimated
output variables when using the highest number of training
patterns (𝑁𝑟 = 0.7𝑁). Results given in this section have been
obtained using, in sequential mode, a workstation with 2 Intel
Xeon E5-2650v3 CPU at 2.3 GHz and 256 GB of RAM.

B. Reflection Coefficients

Fig. 3 shows a comparison between the FW-LP, 2D SVR
#1 and 4D SVR of the magnitude and phase for the direct
coefficient 𝜌𝑦𝑦 and for the cross-coefficient 𝜌𝑦𝑥 at oblique
incidence (𝜃, 𝜑) = (36°, 50°) and using 𝑁𝑟 = 0.3𝑁 . Only one
discretization has been chosen since the error over the test set
for both is very similar (see Fig. 2). As it can be seen, there
is a high degree of accuracy for both SVRs when compared
with FW-LP. In fact, for the curves shown in Fig. 3, the mean
absolute deviation (MAD) for the phase of 𝜌𝑦𝑦 is 0.45° and
0.41° for the 2D and 4D SVRs, respectively. Those numbers
are 3.81° and 1.93° for the cross-coefficient 𝜌𝑦𝑥 . Regarding
the magnitude, the MAD for 𝜌𝑦𝑦 is −77.43 dB and −68.84 dB
for the 2D and 4D SVRs, respectively; while for 𝜌𝑦𝑥 they are
−56.96 dB and −57.54 dB respectively. Similar results were
obtained for the coefficients 𝜌𝑥𝑥 and 𝜌𝑥𝑦 in both magnitude
and phase.

IV. RADIATION PATTERNS

Here, the two methodologies will be compared at the
antenna level in terms of computational efficiency and ac-
curacy predicting the radiation patterns. To that end, a very
large reflectarray for direct-to-home (DTH) applications with
European coverage is considered. Details regarding antenna
optics and design procedure can be consulted in [3].

A. Acceleration of Reflectarray Analysis

Fig. 4 shows the acceleration results for the two 2D SVRs
and the 4D SVR for different values of 𝑁𝑟 . This acceleration
factor is calculated as the ratio between the mean time that
takes the FW-LP to analyse a number of unit cells and the
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Fig. 3. Comparison between the FW-LP and SVR simulations of the mag-
nitude (top) and phase (bottom) for the direct reflection coefficient 𝜌𝑦𝑦 and
the cross-coefficient 𝜌𝑦𝑥 for (𝜃, 𝜑) = (36°, 50°) . The 2D SVR corresponds
to discretization #1. SVRs were trained with 𝑁𝑟 = 0.3𝑁 .

mean time that takes the SVR-based model to analyse the
same number of unit cells. It can be observed how the SVR
becomes slower when 𝑁𝑟 increases. Indeed, this is expected
since the number of support vectors per coefficient increases to
obtain a higher accuracy. Nevertheless, for a similar accuracy
as the 2D SVRs, the 4D SVR is much slower (between 10 and
20 times slower for reflectarray analysis), and even the fastest
4D SVR, with 𝑁𝑟 = 0.01𝑁 , is more than two times slower
than the slowest 2D SVR, and presenting worse accuracy in
the prediction of the reflection coefficients than the 2D SVRs.

In addition, the SVRs were also employed to obtain the lay-
out of a reflectarray antenna following the procedure described
in [8]. The results are summarized in Table II. The acceleration
achieved in the layout design is smaller than that of a pure
analysis since it involves more operations not accelerated by
the SVR. Nevertheless, as shown in Table II, the 2D SVRs
show superior computational performance than the 4D SVRs.

B. Accuracy in Radiation Pattern Computation

Fig. 5 shows the relative error (3) as a function of the
number of training samples (𝑁𝑟 ) for both the 2D and 4D
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Fig. 4. Reflectarray analysis speed-up of the 4D and 2D SVRs for different
values of the number of training samples. 𝑁 for 4D SVR and 2D SVR #1 is
65 000, while for 2D SVR #2 is 190 000.

Table II
PERFORMANCE OF THE 2D AND 4D SVRS FOR A REFLECTARRAY LAYOUT

DESIGN WITH AN INTEL CORE I9-9900 AT 3.10 GHZ. 𝑁 FOR 4D SVR
AND 2D SVR #1 IS 65 000, WHILE FOR 2D SVR #2 IS 190 000.

Tool Time (s) Speed-up

MoM-LP 1574.53 1
2D SVR (#1; 𝑁𝑟 = 0.7𝑁 ) 1.37 1149
2D SVR (#2; 𝑁𝑟 = 0.7𝑁 ) 1.37 1149
4D SVR (𝑁𝑟 = 0.1𝑁 ) 34.65 45
4D SVR (𝑁𝑟 = 0.7𝑁 ) 91.00 17

SVRs. For all cases, it can be seen that the error rapidly
decreases with 𝑁𝑟 . For the 4D SVR, the error of the copolar
pattern stagnates around 1%, and around 2% for the crosspolar
pattern. In contrast, for the 2D SVR the relative error for the
copolar pattern is more stable and lower, with a value around
0.3%, but the crosspolar pattern presents a relative error around
11% for discretization #1 and around 4% for discretization #2.
It is interesting to note that the error stagnates very quickly
when increasing the number of training samples in contrast
to the test error shown in Fig. 2. This means that there is
a point in which obtaining better accuracy in the prediction
of the reflection coefficients does not translate into a lower
error in the prediction of the radiation pattern. It is also
noteworthy that the test error achieved by the 2D SVR models
is lower than the test error for the 4D SVR model, as shown
in Table I. This again shows the effect of discretization of the
angles of incidence on the prediction of the radiation pattern,
that affects more the crosspolar component than the copolar
pattern. Since the 4D SVR includes the angles of incidence
as input parameters, it does not suffer from this problem.
However, the error for the copolar pattern using the 2D SVR
is lower than using the 4D SVR.

C. Evaluation of Radiation Patterns

The dual-linear reflectarray with European coverage for
DTH applications will be used to graphically compare the two
methodologies shown in the present work. Attending to the
results shown in Fig. 5, the 4D SVR with 𝑁𝑟 = 0.3𝑁 and
the 2D SVR #2 with 𝑁𝑟 = 0.1𝑁 will be compared. For this
comparison, the total number of samples for both approaches
is approximately the same: 19 500 for the 4D SVR and 19 000
for the 2D SVR #2 taking into account all (𝜃, 𝜑) pairs.
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Fig. 5. Relative error in the computation of the far field with the 2D and 4D
SVRs for the copolar (CP) and crosspolar (XP) patterns versus the number
of the training samples. 𝑁 for 4D SVR and 2D SVR #1 is 65 000, while for
2D SVR #2 is 190 000.

Fig. 6 shows the comparison with the FW-LP simulation
for the copolar and crosspolar patterns. The accuracy in the
prediction of the copolar pattern for both SVR is very high,
with very slight discrepancies for the 4D SVR for the 10 dBi
curves and below. The 4D SVR is only slightly better for
the prediction of the crosspolar pattern. The 2D SVR has high
accuracy for the high levels of the crosspolar pattern, although
presents some minor discrepancies for lower levels.

The comparison has also been carried out with a different
radiation pattern: a shaped-beam reflectarray with a sectored
beam pattern in azimuth and a squared-cosecant pattern in
elevation; and a pencil beam pattern. A summary of these
results is shown in Table III. As it can be seen, the 2D SVR
models offer lower error in the copolar pattern, although the
4D SVR is slightly better at predicting the crosspolar pattern.
However, this higher accuracy is achieved at the expense of
greater training time and lower computational efficiency in the
analysis of reflectarray antennas. Thus, a compromise might
be achieved to greatly accelerate training and analysis time
by employing a 2D discretization of the angles of incidence
at the expense of slightly decreasing the accuracy of the
crosspolar pattern while also maintaining and even increasing
the accuracy in the prediction of the copolar pattern.

V. CONCLUSION

In this work, we have carried out a performance evaluation
comparison between multidimensional surrogate models based
on support vector regression (SVR) for reflectarray design.
In particular, two different approaches have been compared:
4D SVR models wherein the angles of incidence and two
geometrical variables are input variables, and 2D SVR models
using only the two geometrical features as input variables.
In the latter case, different angles of incidence are grouped
into discrete sets such that 2D SVR models are obtained per
discrete set. When both approaches are compared, the 2D
SVR is considerably faster than the 4D SVR. In fact, it is
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Fig. 6. Comparison of the FW-LP simulation and SVR predictions for the (a) copolar and (b) crosspolar patterns for polarization X of a very large reflectarray
with European coverage for DTH application.

Table III
RELATIVE ERRORS (%) IN THE PREDICTION OF THREE RADIATION

PATTERNS USING DIFFERENT SVR MODELS FOR THE COPOLAR (CP) AND
CROSSPOLAR (XP) PATTERNS.

Tool Pencil beam Shaped-beam Contoured-beam

CP XP CP XP CP XP

2D SVR (#1) 0.11 7.20 0.91 8.32 0.36 11.54
2D SVR (#2) 0.21 2.14 0.91 3.47 0.51 4.00

4D SVR 0.40 1.01 2.08 2.53 1.25 1.81

between one and two orders of magnitude faster to train and
more than one order of magnitude faster to accelerate the
reflectarray analysis. Furthermore, a higher degree of accuracy
in the prediction of the copolar pattern is achieved by the 2D
SVR when compared to FW-LP simulations. Meanwhile, the
prediction of the crosspolar pattern is slightly more accurate
in the 4D SVR-based simulations, although using the 2D SVR
models, errors lower than 4% are achieved. In addition, it has
also been shown that there is a point at which obtaining better
accuracy in the prediction of the reflection coefficients does
not translate into a lower error in the prediction of the radiation
pattern.

Finally, even though the two discretizations of the angles of
incidence tested in this work show very similar computational
performance and accuracy in the prediction of the reflection
coefficients, they have a notable effect in the prediction of the
crosspolar pattern. Indeed, a poor angle discretization may
impact the prediction of the far field and has to be taken
into account if 2D SVR surrogate models are to be used for
reflectarray design.
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