RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Performance evaluation of 2D vs 4D surrogate models of reflectarray unit cells based on support vector regression

Author:
Rodriguez Prado, Daniel; López Fernández, Jesús AlbertoUniovi authority; Arrebola Baena, ManuelUniovi authority
Subject:

machine learning

surrogate model

support vector regression (SVR)

angle of incidence

reflectarray antenna

Publication date:
2021-03
Descripción física:
5 p.
Abstract:

Surrogate models of reflectarray unit cells are usually generated employing a number of input variables such as geometrical features of the cell, frequency and angles of incidence. Here we show how surrogate models based on support vector regression can be improved by removing their dependence on the angle of incidence. This is done by grouping the reflectarray elements under a relatively small set of incidence angles. Thus, instead of generating models with the angles of incidence as input variables, models are obtained per angle of incidence pair, reducing dimensionality to improve their performance without significant impact on the reflectarray analysis accuracy.

Surrogate models of reflectarray unit cells are usually generated employing a number of input variables such as geometrical features of the cell, frequency and angles of incidence. Here we show how surrogate models based on support vector regression can be improved by removing their dependence on the angle of incidence. This is done by grouping the reflectarray elements under a relatively small set of incidence angles. Thus, instead of generating models with the angles of incidence as input variables, models are obtained per angle of incidence pair, reducing dimensionality to improve their performance without significant impact on the reflectarray analysis accuracy.

Description:

European Conference on Antennas and Propagation, EuCAP 2021 (15th. 2021. Düsseldorf, Germany)

URI:
http://hdl.handle.net/10651/65719
Patrocinado por:

This work was supported in part by the Ministerio de Ciencia, Innovación y Universidades under projects TEC2017-86619-R (ARTEINE) and IJC2018-035696-I; by the Ministerio de Economía, Industria y Competitividad under project TEC2016-75103-C2-1-R (MYRADA); by the Gobierno del Principado de Asturias/FEDER under Project GRUPIN-IDI/2018/000191.

Collections
  • Ingeniería Eléctrica, Electrónica, de Comunicaciones y de Sistemas [1091]
  • Investigaciones y Documentos OpenAIRE [8421]
  • Ponencias, Discursos y Conferencias [4233]
Files in this item
Thumbnail
untranslated
Postprint (393.1Kb)
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image