RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Why is quantification an interesting learning problem?

Autor(es) y otros:
González González, PabloAutoridad Uniovi; Díez Peláez, JorgeAutoridad Uniovi; Chawla, Nitesh; Coz Velasco, Juan José delAutoridad Uniovi
Palabra(s) clave:

Sentiment analysis

Opinion mining

Quantification

Prevalence estimation

Fecha de publicación:
2017-03
Editorial:

Springer

Versión del editor:
http://dx.doi.org/10.1007/s13748-016-0103-3
Citación:
Progress in Artificial Intelligence, 6(1), p. 53-58 (2017); doi:10.1007/s13748-016-0103-3
Descripción física:
p. 53–58
Resumen:

There are real applications that do not demand to classify or to make predictions about individual objects, but to estimate some magnitude about a group of them. For instance, one of these cases happens in sentiment analysis and opinion mining. Some applications require to classify opinions as positives or negatives, but there are also others, even more useful sometimes, that just need an estimation of which is the proportion of each class during a concrete period of time. “How many tweets about our new product were positive yesterday?” Practitioners should apply quantification algorithms to tackle this kind of problems, instead of just using off-the-shelf classification methods, because classifiers are suboptimal in the context of quantification tasks. Unfortunately, quantification learning is still relatively an under explored area in machine learning. The goal of this paper is to show that quantification learning is an interesting open problem. To support its benefits, we shall show an application to analyze Twitter comments in which even the most simple quantification methods outperform classification approaches

There are real applications that do not demand to classify or to make predictions about individual objects, but to estimate some magnitude about a group of them. For instance, one of these cases happens in sentiment analysis and opinion mining. Some applications require to classify opinions as positives or negatives, but there are also others, even more useful sometimes, that just need an estimation of which is the proportion of each class during a concrete period of time. “How many tweets about our new product were positive yesterday?” Practitioners should apply quantification algorithms to tackle this kind of problems, instead of just using off-the-shelf classification methods, because classifiers are suboptimal in the context of quantification tasks. Unfortunately, quantification learning is still relatively an under explored area in machine learning. The goal of this paper is to show that quantification learning is an interesting open problem. To support its benefits, we shall show an application to analyze Twitter comments in which even the most simple quantification methods outperform classification approaches

URI:
http://hdl.handle.net/10651/40742
ISSN:
2192-6352; 2192-6360
DOI:
10.1007/s13748-016-0103-3
Patrocinado por:

This research has been funded by MINECO (the Spanish Ministerio de Econom´ıa y Competitividad) and FEDER (Fondo Europeo de Desarrollo Regional), grant TIN2015-65069-C2-2-R. Juan Jos´e del Coz is also supported by the Fulbright Commission and the Salvador de Madariaga Program, grant PRX15/00607. This paper has been written during the stay of Juan Jos´e del Coz at the University of Notre Dame

Colecciones
  • Artículos [37540]
  • Informática [875]
  • Investigaciones y Documentos OpenAIRE [8402]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (2.239Mb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image