RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

On the Problem of Error Propagation in classifier chains for multi-label classification

Author:
Senge, Robin; Coz Velasco, Juan José delUniovi authority; Hüllermeier, Eyke
Publication date:
2013
Editorial:

Springer

Publisher version:
http://dx.doi.org/10.1007/978-3-319-01595-8_18
Descripción física:
p. 163-170
Abstract:

So-called classifier chains have recently been proposed as an appealing method for tackling the multi-label classification task. In this paper, we analyze the influence of a potential pitfall of the learning process, namely the discrepancy between the feature spaces used in training and testing: While true class labels are used as supplementary attributes for training the binary models along the chain, the same models need to rely on estimations of these labels when making a prediction. We provide first experimental results suggesting that the attribute noise thus created can affect the overall prediction performance of a classifier chain

So-called classifier chains have recently been proposed as an appealing method for tackling the multi-label classification task. In this paper, we analyze the influence of a potential pitfall of the learning process, namely the discrepancy between the feature spaces used in training and testing: While true class labels are used as supplementary attributes for training the binary models along the chain, the same models need to rely on estimations of these labels when making a prediction. We provide first experimental results suggesting that the attribute noise thus created can affect the overall prediction performance of a classifier chain

URI:
http://hdl.handle.net/10651/35746
ISBN:
978-3-319-01594-1; 978-3-319-01595-8
DOI:
10.1007/978-3-319-01595-8_18
Patrocinado por:

This research has been supported by the Germany Research Foundation (DFG) and the Spanish Ministerio de Ciencia e Innovación (MICINN) under grant TIN2011-23558

Collections
  • Capítulos de libros [6533]
  • Informática [875]
  • Investigaciones y Documentos OpenAIRE [8415]
Files in this item
Thumbnail
untranslated
Postprint (1.535Mb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image