RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

On the Problem of Error Propagation in classifier chains for multi-label classification

Autor(es) y otros:
Senge, Robin; Coz Velasco, Juan José delAutoridad Uniovi; Hüllermeier, Eyke
Fecha de publicación:
2013
Editorial:

Springer

Versión del editor:
http://dx.doi.org/10.1007/978-3-319-01595-8_18
Descripción física:
p. 163-170
Resumen:

So-called classifier chains have recently been proposed as an appealing method for tackling the multi-label classification task. In this paper, we analyze the influence of a potential pitfall of the learning process, namely the discrepancy between the feature spaces used in training and testing: While true class labels are used as supplementary attributes for training the binary models along the chain, the same models need to rely on estimations of these labels when making a prediction. We provide first experimental results suggesting that the attribute noise thus created can affect the overall prediction performance of a classifier chain

So-called classifier chains have recently been proposed as an appealing method for tackling the multi-label classification task. In this paper, we analyze the influence of a potential pitfall of the learning process, namely the discrepancy between the feature spaces used in training and testing: While true class labels are used as supplementary attributes for training the binary models along the chain, the same models need to rely on estimations of these labels when making a prediction. We provide first experimental results suggesting that the attribute noise thus created can affect the overall prediction performance of a classifier chain

URI:
http://hdl.handle.net/10651/35746
ISBN:
978-3-319-01594-1; 978-3-319-01595-8
DOI:
10.1007/978-3-319-01595-8_18
Patrocinado por:

This research has been supported by the Germany Research Foundation (DFG) and the Spanish Ministerio de Ciencia e Innovación (MICINN) under grant TIN2011-23558

Colecciones
  • Capítulos de libros [6531]
  • Informática [875]
  • Investigaciones y Documentos OpenAIRE [8416]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (1.535Mb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image