RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Using tensor products to detect unconditional label dependence in multilabel classifications

Autor(es) y otros:
Díez Peláez, JorgeAutoridad Uniovi; Coz Velasco, Juan José delAutoridad Uniovi; Luaces Rodríguez, ÓscarAutoridad Uniovi; Bahamonde Rionda, AntonioAutoridad Uniovi
Palabra(s) clave:

Multilabel

Label dependence

Tensor products

Kernel methods

Fecha de publicación:
2016-02
Editorial:

Elsevier

Versión del editor:
http://dx.doi.org/10.1016/j.ins.2015.08.055
Citación:
Information Sciences, 329, p. 20-32 (2016); doi:10.1016/j.ins.2015.08.055
Descripción física:
p. 20-32
Resumen:

Multilabel (ML) classification tasks consist of assigning a set of labels to each input. It is well known that detecting label dependencies is crucial in order to improve the performance in ML problems. In this paper, we study a new kernel approach to take into account unconditional label dependence between labels. The aim is to improve the performance measured by a micro-averaged loss function. The core idea is to transform a ML task into a binary classification problem whose inputs are drawn from a tensor space of the original input space and a representation of the labels. In this joint feature space we define a kernel to explicitly involve both labels and object descriptions. In addition to the theoretical contributions, the experimental results of this study provide an interesting conclusion: the performance in terms of Hamming Loss can be improved when unconditional label dependence is considered, as our method does. We report a thoroughly experimentation carried out with real world domains and several synthetic datasets devised to analyze the effect of exploiting label dependence in scenarios with different degrees of dependency

Multilabel (ML) classification tasks consist of assigning a set of labels to each input. It is well known that detecting label dependencies is crucial in order to improve the performance in ML problems. In this paper, we study a new kernel approach to take into account unconditional label dependence between labels. The aim is to improve the performance measured by a micro-averaged loss function. The core idea is to transform a ML task into a binary classification problem whose inputs are drawn from a tensor space of the original input space and a representation of the labels. In this joint feature space we define a kernel to explicitly involve both labels and object descriptions. In addition to the theoretical contributions, the experimental results of this study provide an interesting conclusion: the performance in terms of Hamming Loss can be improved when unconditional label dependence is considered, as our method does. We report a thoroughly experimentation carried out with real world domains and several synthetic datasets devised to analyze the effect of exploiting label dependence in scenarios with different degrees of dependency

URI:
http://hdl.handle.net/10651/35740
ISSN:
0020-0255
DOI:
10.1016/j.ins.2015.08.055
Patrocinado por:

The research reported here is supported in part under grant TIN2011-23558 from the MICINN (Ministerio de Economía y Competitividad, Spain)

Colecciones
  • Artículos [37532]
  • Informática [872]
  • Investigaciones y Documentos OpenAIRE [8365]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (442.9Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image