Mostrar el registro sencillo del ítem
Using tensor products to detect unconditional label dependence in multilabel classifications
dc.contributor.author | Díez Peláez, Jorge | |
dc.contributor.author | Coz Velasco, Juan José del | |
dc.contributor.author | Luaces Rodríguez, Óscar | |
dc.contributor.author | Bahamonde Rionda, Antonio | |
dc.date.accessioned | 2016-03-16T12:15:29Z | |
dc.date.available | 2016-03-16T12:15:29Z | |
dc.date.issued | 2016-02 | |
dc.identifier.citation | Information Sciences, 329, p. 20-32 (2016); doi:10.1016/j.ins.2015.08.055 | |
dc.identifier.issn | 0020-0255 | |
dc.identifier.uri | http://hdl.handle.net/10651/35740 | |
dc.description.abstract | Multilabel (ML) classification tasks consist of assigning a set of labels to each input. It is well known that detecting label dependencies is crucial in order to improve the performance in ML problems. In this paper, we study a new kernel approach to take into account unconditional label dependence between labels. The aim is to improve the performance measured by a micro-averaged loss function. The core idea is to transform a ML task into a binary classification problem whose inputs are drawn from a tensor space of the original input space and a representation of the labels. In this joint feature space we define a kernel to explicitly involve both labels and object descriptions. In addition to the theoretical contributions, the experimental results of this study provide an interesting conclusion: the performance in terms of Hamming Loss can be improved when unconditional label dependence is considered, as our method does. We report a thoroughly experimentation carried out with real world domains and several synthetic datasets devised to analyze the effect of exploiting label dependence in scenarios with different degrees of dependency | spa |
dc.description.sponsorship | The research reported here is supported in part under grant TIN2011-23558 from the MICINN (Ministerio de Economía y Competitividad, Spain) | spa |
dc.format.extent | p. 20-32 | spa |
dc.language.iso | eng | spa |
dc.publisher | Elsevier | spa |
dc.relation.ispartof | Information Sciences, 329 | spa |
dc.rights | © 2016 Elsevier | |
dc.subject | Multilabel | spa |
dc.subject | Label dependence | spa |
dc.subject | Tensor products | spa |
dc.subject | Kernel methods | spa |
dc.title | Using tensor products to detect unconditional label dependence in multilabel classifications | spa |
dc.type | journal article | spa |
dc.identifier.doi | 10.1016/j.ins.2015.08.055 | |
dc.relation.projectID | MEC/TIN2011-23558 | spa |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.ins.2015.08.055 | spa |
dc.rights.accessRights | open access | |
dc.type.hasVersion | AM |
Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos [37355]
-
Informática [866]
-
Investigaciones y Documentos OpenAIRE [8257]
Publicaciones resultado de proyectos financiados con fondos públicos