RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Robust scale estimators for fuzzy data

Author:
Rosa de Sáa, Sara de laUniovi authority; Lubiano Gómez, María AsunciónUniovi authority; Sinova Fernández, BeatrizUniovi authority; Filzmoser, P.
Publication date:
2017
Publisher version:
http://dx.doi.org/10.1007/s11634-015-0210-1
Citación:
Advances in Data Analysis and Classification, 11, p. 731–758 (2017); doi:10.1007/s11634-015-0210-1
URI:
http://hdl.handle.net/10651/33460
ISSN:
1862-5347
DOI:
10.1007/s11634-015-0210-1
Patrocinado por:

The research in this paper has been partially supported by/benefited from Principality of Asturias Grants GRUPIN14-101, Research Contract E-33-2015-0040746 (this one for Sinova) and Severo Ochoa BP12012 (this one for De la Rosa de Sáa), and the Spanish Ministry of Economy and Competitiveness Grant MTM2013-44212-P. Their financial support is gratefully acknowledged.

Collections
  • Artículos [37532]
  • Estadística e Investigación Operativa [294]
  • Investigaciones y Documentos OpenAIRE [8366]
Files in this item
Thumbnail
untranslated
Postprint (489.2Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image