RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

A kernel based method for discovering market segments in beef meat

Author:
Díez Peláez, JorgeUniovi authority; Coz Velasco, Juan José delUniovi authority; Sañudo, Carlos; Albertí, P.; Bahamonde Rionda, AntonioUniovi authority
Publication date:
2005
Editorial:

Springer

Publisher version:
http://dx.doi.org/10.1007/11564126_46
Descripción física:
p. 462-469
Abstract:

In this paper we propose a method for learning the reasons why groups of consumers prefer some food products instead of others of the same type. We emphasize the role of groups given that, from a practical point of view, they may represent market segments that demand different products. Our method starts representing people’s preferences in a metric space; there we are able to define a kernel based similarity function that allows a clustering algorithm to discover significant groups of consumers with homogeneous tastes. Finally in each cluster, we learn, with a SVM, a function that explains the tastes of the consumers grouped in the cluster. To illustrate our method, a real case of consumers of beef meat was studied. The panel was formed by 171 people who rated 303 samples of meat from 101 animals with 3 different aging periods

In this paper we propose a method for learning the reasons why groups of consumers prefer some food products instead of others of the same type. We emphasize the role of groups given that, from a practical point of view, they may represent market segments that demand different products. Our method starts representing people’s preferences in a metric space; there we are able to define a kernel based similarity function that allows a clustering algorithm to discover significant groups of consumers with homogeneous tastes. Finally in each cluster, we learn, with a SVM, a function that explains the tastes of the consumers grouped in the cluster. To illustrate our method, a real case of consumers of beef meat was studied. The panel was formed by 171 people who rated 303 samples of meat from 101 animals with 3 different aging periods

Description:

9th European Conference on Principles and Practice of Knowledge Discovery in Databases, Porto, Portugal

URI:
http://hdl.handle.net/10651/31248
ISBN:
978-3-540-29244-9
DOI:
10.1007/11564126_46
Collections
  • Capítulos de libros [6520]
  • Informática [872]
Files in this item
Thumbnail
untranslated
A kernel based method for discovering market segments in beef meat.pdf (87.54Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image