RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

A kernel based method for discovering market segments in beef meat

Autor(es) y otros:
Díez Peláez, JorgeAutoridad Uniovi; Coz Velasco, Juan José delAutoridad Uniovi; Sañudo, Carlos; Albertí, P.; Bahamonde Rionda, AntonioAutoridad Uniovi
Fecha de publicación:
2005
Editorial:

Springer

Versión del editor:
http://dx.doi.org/10.1007/11564126_46
Descripción física:
p. 462-469
Resumen:

In this paper we propose a method for learning the reasons why groups of consumers prefer some food products instead of others of the same type. We emphasize the role of groups given that, from a practical point of view, they may represent market segments that demand different products. Our method starts representing people’s preferences in a metric space; there we are able to define a kernel based similarity function that allows a clustering algorithm to discover significant groups of consumers with homogeneous tastes. Finally in each cluster, we learn, with a SVM, a function that explains the tastes of the consumers grouped in the cluster. To illustrate our method, a real case of consumers of beef meat was studied. The panel was formed by 171 people who rated 303 samples of meat from 101 animals with 3 different aging periods

In this paper we propose a method for learning the reasons why groups of consumers prefer some food products instead of others of the same type. We emphasize the role of groups given that, from a practical point of view, they may represent market segments that demand different products. Our method starts representing people’s preferences in a metric space; there we are able to define a kernel based similarity function that allows a clustering algorithm to discover significant groups of consumers with homogeneous tastes. Finally in each cluster, we learn, with a SVM, a function that explains the tastes of the consumers grouped in the cluster. To illustrate our method, a real case of consumers of beef meat was studied. The panel was formed by 171 people who rated 303 samples of meat from 101 animals with 3 different aging periods

Descripción:

9th European Conference on Principles and Practice of Knowledge Discovery in Databases, Porto, Portugal

URI:
http://hdl.handle.net/10651/31248
ISBN:
978-3-540-29244-9
DOI:
10.1007/11564126_46
Colecciones
  • Capítulos de libros [6531]
  • Informática [875]
Ficheros en el ítem
Thumbnail
untranslated
A kernel based method for discovering market segments in beef meat.pdf (87.54Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image