RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Binary relevance efficacy for multilabel classification

Autor(es) y otros:
Luaces Rodríguez, ÓscarAutoridad Uniovi; Díez Peláez, JorgeAutoridad Uniovi; Barranquero Tolosa, JoséAutoridad Uniovi; Coz Velasco, Juan José delAutoridad Uniovi; Bahamonde Rionda, AntonioAutoridad Uniovi
Palabra(s) clave:

Multilabel classification

Binary relevance

Synthetic datasets

Label dependency

Fecha de publicación:
2012
Editorial:

Springer

Versión del editor:
http://dx.doi.org/10.1007/s13748-012-0030-x
Citación:
Progress in Artificial Intelligence, 1(4), p. 303-313 (2012); doi:10.1007/s13748-012-0030-x
Descripción física:
p. 303-313
Resumen:

The goal of multilabel (ML) classi cation is to induce models able to tag objects with the labels that better describe them. The main baseline for ML classi- cation is Binary Relevance (BR), which is commonly criticized in the literature because of its label independence assumption. Despite this fact, this paper discusses some interesting properties of BR, mainly that it produces optimal models for several ML loss functions. Additionally, we present an analytical study about ML benchmarks datasets, pointing out some shortcomings. As a result, this paper proposes the use of synthetic datasets to better analyze the behavior of ML methods in domains with di erent characteristics. To support this claim, we perform some experiments using synthetic data proving the competitive performance of BR with respect to a more complex method in di cult problems with many labels, a conclusion which was not stated by previous studies

The goal of multilabel (ML) classi cation is to induce models able to tag objects with the labels that better describe them. The main baseline for ML classi- cation is Binary Relevance (BR), which is commonly criticized in the literature because of its label independence assumption. Despite this fact, this paper discusses some interesting properties of BR, mainly that it produces optimal models for several ML loss functions. Additionally, we present an analytical study about ML benchmarks datasets, pointing out some shortcomings. As a result, this paper proposes the use of synthetic datasets to better analyze the behavior of ML methods in domains with di erent characteristics. To support this claim, we perform some experiments using synthetic data proving the competitive performance of BR with respect to a more complex method in di cult problems with many labels, a conclusion which was not stated by previous studies

URI:
http://hdl.handle.net/10651/30616
ISSN:
2192-6352; 2192-6360
DOI:
10.1007/s13748-012-0030-x
Patrocinado por:

The research reported here is supported in part under grant TIN2011-23558 from the Ministerio de Economía y Competitividad, Spain

Colecciones
  • Artículos [37548]
  • Informática [875]
  • Investigaciones y Documentos OpenAIRE [8420]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (1.155Mb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image