RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Quantitative depth profiling of boron and arsenic ultra low energy implants by pulsed rf-GD-ToFMS

Author:
Lobo Revilla, LaraUniovi authority; Fernández García, BeatrizUniovi authority; Pereiro García, María RosarioUniovi authority; Bordel García, NereaUniovi authority; Demenev, Evgeny; Giubertoni, Damiano; Bersani, Massimo; Hoenicke, Philipp; Beckhoff, Burkhard; Sanz Medel, AlfredoUniovi authority
Subject:

Depth Profiles, Glow Discharge, Time-Of-Flight Spectrometer, B, Ar.

Publication date:
2011
Publisher version:
http://dx.doi.org/10.1039/c0ja00197j
Citación:
Journal of Analytical Atomic Spectrometry, 26(3), p. 542-549 (2011); doi:10.1039/c0ja00197j
Descripción física:
p. 542-549
Abstract:

In very recent years particular effort is being devoted to the development of radiofrequency (rf) pulsed glow discharges (GDs) coupled to time of flight mass spectrometry (ToFMS) for depth profile qualitative analysis with nanometre depth resolution of technological materials. As such technique does not require sampling at ultra-high vacuum conditions it facilitates a comparatively high sample throughput, related to the reference technique secondary ion mass spectrometry (SIMS). In this work, pulsed rf-GD-ToFMS is investigated for the fast and sensitive characterization of boron and arsenic ultra low energy (ULE) implants on silicon. The possibility of using a simple multi-matrix calibration procedure is demonstrated for the first time for quantification of this type of samples and the validation of the proposed procedure has been carried out through the successful analysis of a multilayered sample with single and couple 11B delta markers. Results obtained with the proposed methodology for boron and arsenic ULE implants, prepared under different ion doses and ion energy conditions, have proved to be in good agreement with those achieved by using complementary techniques including SIMS and grazing incidence X-ray fluorescence. Thus, although further investigations are necessary for more critical evaluation of depth resolution, the work carried out demonstrates that rf-GD-ToFMS can be an advantageous tool for the analytical characterization of boron and arsenic ULE implants on silicon.

In very recent years particular effort is being devoted to the development of radiofrequency (rf) pulsed glow discharges (GDs) coupled to time of flight mass spectrometry (ToFMS) for depth profile qualitative analysis with nanometre depth resolution of technological materials. As such technique does not require sampling at ultra-high vacuum conditions it facilitates a comparatively high sample throughput, related to the reference technique secondary ion mass spectrometry (SIMS). In this work, pulsed rf-GD-ToFMS is investigated for the fast and sensitive characterization of boron and arsenic ultra low energy (ULE) implants on silicon. The possibility of using a simple multi-matrix calibration procedure is demonstrated for the first time for quantification of this type of samples and the validation of the proposed procedure has been carried out through the successful analysis of a multilayered sample with single and couple 11B delta markers. Results obtained with the proposed methodology for boron and arsenic ULE implants, prepared under different ion doses and ion energy conditions, have proved to be in good agreement with those achieved by using complementary techniques including SIMS and grazing incidence X-ray fluorescence. Thus, although further investigations are necessary for more critical evaluation of depth resolution, the work carried out demonstrates that rf-GD-ToFMS can be an advantageous tool for the analytical characterization of boron and arsenic ULE implants on silicon.

URI:
http://hdl.handle.net/10651/9847
ISSN:
0267-9477
Identificador local:

20110220

DOI:
10.1039/c0ja00197j
Collections
  • Artículos [37534]
Files in this item
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image