RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Quantitative profiling of in vivo generated cisplatin-DNA adducts using different isotope dilution strategies

Autor(es) y otros:
García Sar, DanielAutoridad Uniovi; Montes Bayón, MaríaAutoridad Uniovi; Blanco González, ElisaAutoridad Uniovi; Sierra Zapico, Luisa MaríaAutoridad Uniovi; Aguado Ortiz, LeticiaAutoridad Uniovi; Comendador García, Miguel ÁngelAutoridad Uniovi; Köllensperger, Gunda; Hann, Stephan; Sanz Medel, AlfredoAutoridad Uniovi
Fecha de publicación:
2009
Versión del editor:
http://dx.doi.org/10.1021/ac901360f
Citación:
Analytical Chemistry, 81(23), p. 9553-9560 (2009); doi:10.1021/ac901360f
Descripción física:
p. 9553-9560
Resumen:

Platinum compounds are the major group of metal-based chemotherapeutic drug used in current practice and still a topic of intense investigation. The relative contribution of structurally defined cisplatin adducts with DNA to induce apoptosis and the cellular processing of these lesions is still poorly understood mostly due to the lack of sensitive and accurate analytical tools for in vivo studies. In this regard, two novel sensitive and selective strategies are proposed here to quantify cisplatin−DNA adducts generated in Drosophila melanogaster larvae and in head and neck squamous cell carcinoma cultures. The methods involve the isolation and enzymatic digestion of the DNA in the samples exposed to cisplatin and further quantification by high-performance liquid chromatography with inductively coupled plasma mass spectrometric detection (HPLC−ICPMS). Two different strategies, based on isotope dilution analysis (IDA), have been attempted and evaluated for quantification: species-unspecific (the postcolumn addition of a 194Pt-enriched solution) and the species-specific (by means of a synthesized isotopically enriched cisplatin (194Pt) adduct). For the second approach, the synthesis and characterization of the cisplatin adduct in a custom oligonucleotide containing the sequence (5′-TCCGGTCC-3′) was necessary. The adducted oligo was then added to the DNA samples either before or after enzymatic hydrolysis. The results obtained using these two strategies (mixing before and after enzymatic treatment) permit to address, quantitatively, the column recoveries as well as the efficiency of the enzymatic hydrolysis. Species-specific spiking before enzymatic digestion provided accurate and precise analytical results to clearly differentiate between Drosophila samples and carcinoma cell cultures exposed to different cisplatin concentrations.

Platinum compounds are the major group of metal-based chemotherapeutic drug used in current practice and still a topic of intense investigation. The relative contribution of structurally defined cisplatin adducts with DNA to induce apoptosis and the cellular processing of these lesions is still poorly understood mostly due to the lack of sensitive and accurate analytical tools for in vivo studies. In this regard, two novel sensitive and selective strategies are proposed here to quantify cisplatin−DNA adducts generated in Drosophila melanogaster larvae and in head and neck squamous cell carcinoma cultures. The methods involve the isolation and enzymatic digestion of the DNA in the samples exposed to cisplatin and further quantification by high-performance liquid chromatography with inductively coupled plasma mass spectrometric detection (HPLC−ICPMS). Two different strategies, based on isotope dilution analysis (IDA), have been attempted and evaluated for quantification: species-unspecific (the postcolumn addition of a 194Pt-enriched solution) and the species-specific (by means of a synthesized isotopically enriched cisplatin (194Pt) adduct). For the second approach, the synthesis and characterization of the cisplatin adduct in a custom oligonucleotide containing the sequence (5′-TCCGGTCC-3′) was necessary. The adducted oligo was then added to the DNA samples either before or after enzymatic hydrolysis. The results obtained using these two strategies (mixing before and after enzymatic treatment) permit to address, quantitatively, the column recoveries as well as the efficiency of the enzymatic hydrolysis. Species-specific spiking before enzymatic digestion provided accurate and precise analytical results to clearly differentiate between Drosophila samples and carcinoma cell cultures exposed to different cisplatin concentrations.

URI:
http://hdl.handle.net/10651/8748
ISSN:
0003-2700
Identificador local:

20090102

DOI:
10.1021/ac901360f
Patrocinado por:

Financial support from the Ministry of Science and Innovation is acknowledged through the projects CTQ2007-60206/BQU and CTQ2006-02309

Colecciones
  • Artículos [37546]
Ficheros en el ítem
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image