RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Double magnetic phase transition in ND(4)Fe(DPO(4))(2) and NH(4)Fe(HPO(4))(2)

Author:
Fernández Alfonso, María Belén AuroraUniovi authority; Piqué Rami, María del CarmenUniovi authority; Trobajo Fernández, María del CaminoUniovi authority; García Menéndez, José RubénUniovi authority; Kampert, Erik; Zeitler, Uli; Rodríguez Fernández, Jesús; Fernández Díaz, María Teresa; Blanco Rodríguez, Jesús ÁngelUniovi authority
Publication date:
2010
Editorial:

American Physical Society

Publisher version:
http://dx.doi.org/10.1103/PhysRevB.82.144431
Citación:
Physical Review B, 82(14), 144431(2010)); doi:10.1103/PhysRevB.82.144431
Abstract:

Combining neutron diffraction, magnetization measurements up to 330 kOe and specific-heat data, we have studied in detail both the crystal and magnetic structures of triclinic ND4Fe(DPO4)2 and NH4Fe(HPO4)2 compounds. The low symmetry of this structure gives rise to a complex pattern of competing superexchange interactions between the magnetic moments of two types of Fe3+ sites (with different site symmetry) that are responsible for the existence of two magnetic phase transitions. Below TC=17.82±0.05 K ND4Fe(DPO4)2 orders ferrimagnetically with the magnetic moments lying in the crystallographic plane ac. As the temperature is lowered to Tt=3.52±0.05 K the compound undergoes a magnetic phase transition to an equal moment antiphase structure characterized by the propagation vector close to k⃗AF≈(1/16,0,1/16) and a magnetic moment for the Fe3+ ions of 4.8 μB at 1.89 K. In addition, a two-step metamagnetic process is observed in the magnetization measurements at 2 K, where the antiphase ordering is destroyed under a field of only 2 kOe and the compound recovers the high-temperature ferrimagnetic ordering at around 20 kOe. The stability of this ferrimagnetic phase under magnetic field is only broken when the strength of the field reaches values as large as 180 kOe, and the magnetic moments begin to rotate to reach the full-induced ferromagnetic structure. A mean-field model has been used to account for the magnetization process leading to an estimation of the molecular-field coefficient of −2.86 K and the value of the critical magnetic field of 535 kOe to attain the full-induced ferromagnetic phase.

Combining neutron diffraction, magnetization measurements up to 330 kOe and specific-heat data, we have studied in detail both the crystal and magnetic structures of triclinic ND4Fe(DPO4)2 and NH4Fe(HPO4)2 compounds. The low symmetry of this structure gives rise to a complex pattern of competing superexchange interactions between the magnetic moments of two types of Fe3+ sites (with different site symmetry) that are responsible for the existence of two magnetic phase transitions. Below TC=17.82±0.05 K ND4Fe(DPO4)2 orders ferrimagnetically with the magnetic moments lying in the crystallographic plane ac. As the temperature is lowered to Tt=3.52±0.05 K the compound undergoes a magnetic phase transition to an equal moment antiphase structure characterized by the propagation vector close to k⃗AF≈(1/16,0,1/16) and a magnetic moment for the Fe3+ ions of 4.8 μB at 1.89 K. In addition, a two-step metamagnetic process is observed in the magnetization measurements at 2 K, where the antiphase ordering is destroyed under a field of only 2 kOe and the compound recovers the high-temperature ferrimagnetic ordering at around 20 kOe. The stability of this ferrimagnetic phase under magnetic field is only broken when the strength of the field reaches values as large as 180 kOe, and the magnetic moments begin to rotate to reach the full-induced ferromagnetic structure. A mean-field model has been used to account for the magnetization process leading to an estimation of the molecular-field coefficient of −2.86 K and the value of the critical magnetic field of 535 kOe to attain the full-induced ferromagnetic phase.

URI:
http://link.aps.org/doi/10.1103/PhysRevB.82.144431
http://hdl.handle.net/10651/7872
ISSN:
1098-0121
DOI:
10.1103/PhysRevB.82.144431
Collections
  • Artículos [37532]
Files in this item
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image