A Modular Power Converter Topology to Interface Removable Batteries with 400 V and 800 V Electric Powertrains
Subject:
DC-DC converter
Dual active bridge
Electrical vehicles
Reconfigurable topology
Removable battery
Publication date:
Editorial:
MDPI
Publisher version:
Citación:
Abstract:
Electric vehicles (EVs) are a sustainable means of transportation, with their onboard batteries being crucial for both performance and energy management. A modular and reconfigurable power converter topology to connect removable batteries to the main DC bus of an EV is proposed in this paper. By employing Dual Active Bridge (DAB) converters in an Input Parallel Output Series (IPOS) configuration, the proposed topology is compatible with 400 V and 800 V standards without the need for external switches. The research explored the possibility to apply a very simple control strategy based on independent linear regulators. A theoretical analysis of the IPOS DAB converter is presented and the design of independent control regulators which minimize the coupling effect between the control variables is addressed. The stability of the IPOS DAB converter could be ensured using the proposed simplistic approach, enabling us to drastically simplify the regulator design step. The dynamic performance of the system was confirmed by means of a simulation and experimentally.
Electric vehicles (EVs) are a sustainable means of transportation, with their onboard batteries being crucial for both performance and energy management. A modular and reconfigurable power converter topology to connect removable batteries to the main DC bus of an EV is proposed in this paper. By employing Dual Active Bridge (DAB) converters in an Input Parallel Output Series (IPOS) configuration, the proposed topology is compatible with 400 V and 800 V standards without the need for external switches. The research explored the possibility to apply a very simple control strategy based on independent linear regulators. A theoretical analysis of the IPOS DAB converter is presented and the design of independent control regulators which minimize the coupling effect between the control variables is addressed. The stability of the IPOS DAB converter could be ensured using the proposed simplistic approach, enabling us to drastically simplify the regulator design step. The dynamic performance of the system was confirmed by means of a simulation and experimentally.
ISSN:
Patrocinado por:
This work was supported in part by the Spanish government under the research project MCINN-22-TED2021-130939B-I00. This work was also supported by the Principado de Asturias government through the grant “Severo Ochoa” BP21-114.