RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Analysis and optimization of the heat-insulating light concrete hollow brick walls design by the finite element method

Autor(es) y otros:
Coz Díaz, Juan José delAutoridad Uniovi; García Nieto, Paulino JoséAutoridad Uniovi; Betegón Biempica, María CovadongaAutoridad Uniovi; Prendes Gero, María BelénAutoridad Uniovi
Palabra(s) clave:

Light concrete hollow brick wall

Finite element modelling

Non-linear complex heat transfer

Energy savings

Thermal optimization

Fecha de publicación:
2007
Editorial:

Elsevier

Versión del editor:
https://doi.org/10.1016/j.applthermaleng.2006.10.010
Citación:
Applied Thermal Engineering, 27, p. 1445-1456 (2007); doi: 10.1016/j.applthermaleng.2006.10.010
Descripción física:
p. 1445-1456
Resumen:

Department of Public Works, owners and building proprietors are demanding high-capacity heat-insulating exterior masonry components specifically for further energy savings. For housing and industrial structures there is also a great interest in light building materials with good physical material behaviour, with respect to an energy conscious and ecological design, which fulfils all strength and serviceability requirements. The major variables influencing the thermal conductivity of masonry materials are illustrated in this work by taking blocks made from no-fine lightweight concrete and different mortar properties. The finite element method (FEM) is used for finding accurate solutions of the heat transfer equation for five different light concrete hollow brick walls. Mathematically, the non-linearity is due to the radiation boundary condition inside the inner recesses of the bricks. The conduction and convection phenomena are taking into account in this study for three different values of the mortar conductivity and three different values for the bricks. Optimization of the walls is carried out from the finite element analysis of five hollow brick geometries by means of the mass overall thermal efficiency and the equivalent thermal conductivity. Finally, conclusions of this work are exposed.

Department of Public Works, owners and building proprietors are demanding high-capacity heat-insulating exterior masonry components specifically for further energy savings. For housing and industrial structures there is also a great interest in light building materials with good physical material behaviour, with respect to an energy conscious and ecological design, which fulfils all strength and serviceability requirements. The major variables influencing the thermal conductivity of masonry materials are illustrated in this work by taking blocks made from no-fine lightweight concrete and different mortar properties. The finite element method (FEM) is used for finding accurate solutions of the heat transfer equation for five different light concrete hollow brick walls. Mathematically, the non-linearity is due to the radiation boundary condition inside the inner recesses of the bricks. The conduction and convection phenomena are taking into account in this study for three different values of the mortar conductivity and three different values for the bricks. Optimization of the walls is carried out from the finite element analysis of five hollow brick geometries by means of the mass overall thermal efficiency and the equivalent thermal conductivity. Finally, conclusions of this work are exposed.

URI:
https://hdl.handle.net/10651/75680
ISSN:
1359-4311
DOI:
10.1016/j.applthermaleng.2006.10.010
Patrocinado por:

The authors wish to acknowledge the financial support provided by the Department of Construction at University of Oviedo and the MAXIT Group.We also thank to Swanson Analysis Inc. for the use of ANSYS University Intermediate program and AST Simulation Ltd. for the use of ANSYS Mechanical.

Colecciones
  • Artículos [37548]
Ficheros en el ítem
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image