Mostrar el registro sencillo del ítem

Dual Control Strategy for Non-Minimum Phase Behavior Mitigation in DC-DC Boost Converters Using Finite Control Set Model Predictive Control and Proportional–Integral Controllers

dc.contributor.authorMármol, Alejandra
dc.contributor.authorZamiri, Elyas
dc.contributor.authorMurillo Yarce, Duberney 
dc.contributor.authorTuñón Díaz, Jairo 
dc.contributor.authorVázquez Ardura, Aitor 
dc.contributor.authorCastro, Ángel de
dc.date.accessioned2024-11-15T08:23:14Z
dc.date.available2024-11-15T08:23:14Z
dc.date.issued2024
dc.identifier.citationApplied Sciences, 14(22) (2024); doi:10.3390/app142210318
dc.identifier.issn2076-3417
dc.identifier.urihttps://hdl.handle.net/10651/75656
dc.description.abstractModel Predictive Control (MPC) has emerged as a promising alternative for controlling power converters, offering benefits such as flexibility, simplicity, and rapid control response, particularly when short-horizon algorithms are employed. This paper introduces a system using a short-horizon Finite Control Set MPC (FCS-MPC) strategy to specifically address the challenge of non-minimum phase behavior in boost converters. The non-minimum phase issue, which complicates the control process by introducing an initial inverse response, is effectively mitigated by the proposed method. A Proportional–Integral (PI) controller is integrated to dynamically adjust the reference current based on the output voltage error, thereby enhancing overall system stability and performance. Unlike conventional PI-MPC methods, where the PI controller has an influence on the system dynamics, the PI controller in this approach is solely used for tuning the reference current needed for the FCS-MPC controller. The PI controller addresses small deviations in output voltage, primarily due to model prediction inaccuracies, ensuring steady-state accuracy, while the FCS-MPC handles fast dynamic responses to adapt the controller’s behavior based on load conditions. This dual control strategy effectively balances the need for precise voltage regulation and rapid adaptation to varying load conditions. The proposed method’s effectiveness is validated through a multi-stage simulation test, demonstrating significant improvements in response time and stability compared to traditional control methods. Hardware-in-the-loop testing further confirms the system’s robustness and potential for real-time applications in power electronics.spa
dc.description.sponsorshipThis research was partially funded by the project PID2022-137593OBI00, financed by the Spanish Ministry MCIN/AEI/10.13039/501100011033/FEDER, UE, and FSE+.spa
dc.language.isoengspa
dc.publisherMDPIspa
dc.relation.ispartofApplied Sciencesspa
dc.rightsAtribución 4.0 Internacional*
dc.rights© 2024 by the authors. Licensee MDPI, Basel, Switzerland
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDC-DC convertersspa
dc.subjectFinite control setspa
dc.subjectBoost converterspa
dc.subjectNon-minimum pasespa
dc.titleDual Control Strategy for Non-Minimum Phase Behavior Mitigation in DC-DC Boost Converters Using Finite Control Set Model Predictive Control and Proportional–Integral Controllersspa
dc.typejournal articlespa
dc.identifier.doi10.3390/app142210318
dc.relation.projectIDPID2022-137593OBI00spa
dc.relation.publisherversionhttps://doi.org/10.3390/app142210318spa
dc.rights.accessRightsopen accessspa
dc.type.hasVersionVoRspa


Ficheros en el ítem

untranslated

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Este ítem está sujeto a una licencia Creative Commons