RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Deep-Neural-Network-based anomaly detector for DC/DC power converter failure detection

Autor(es) y otros:
Fernández Costales, MiguelAutoridad Uniovi; Fernández Miaja, PabloAutoridad Uniovi; Arias Pérez de Azpeitia, ManuelAutoridad Uniovi; Fernández Álvarez, José AntonioAutoridad Uniovi
Palabra(s) clave:

DC/DC Converters

Power electronics

Space

Artificial Intelligence

Fecha de publicación:
2024
Resumen:

The Electrical Power Subsystem (EPS) of a spacecraft is paramount to its operation since it will guarantee that every piece of equipment is receiving its required power. Therefore, the reliability of the power subsystem is one of the cornerstones of the full spacecraft reliability. DC/DC converters are one of the main constituents of the power subsystems. A method able to estimate the degradation of a dc-dc converter would enhance the power system reliability. It would allow to detect dc-dc converters prone to failure and to take corrective actions to extend their remaining lifespan.

The Electrical Power Subsystem (EPS) of a spacecraft is paramount to its operation since it will guarantee that every piece of equipment is receiving its required power. Therefore, the reliability of the power subsystem is one of the cornerstones of the full spacecraft reliability. DC/DC converters are one of the main constituents of the power subsystems. A method able to estimate the degradation of a dc-dc converter would enhance the power system reliability. It would allow to detect dc-dc converters prone to failure and to take corrective actions to extend their remaining lifespan.

Descripción:

SPAICE Conference on AI in and for Space (1st. 2024. European Centre for Space Applications and Telecommunications (ECSAT), UK)

URI:
https://hdl.handle.net/10651/75373
Patrocinado por:

This work has been funded by the Spanish Ministry of Science through PID2021-127707OB-C21 and by the Principality of Asturias through PA-23-BP21-207.

Colecciones
  • Ingeniería Eléctrica, Electrónica, de Comunicaciones y de Sistemas [1091]
  • Investigaciones y Documentos OpenAIRE [8420]
  • Ponencias, Discursos y Conferencias [4233]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (362.3Kb)
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image