RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Relativistic magnetic interactions from nonorthogonal basis sets

Autor(es) y otros:
Martínez Carracedo, GabrielAutoridad Uniovi; Oroszlány, L.; García Fuente, Amador::7611::600;Nyári, B.; Udvardi, L.; Szunyogh, L.; Ferrer Rodríguez, JaimeAutoridad Uniovi
Fecha de publicación:
2023
Versión del editor:
http://dx.doi.org/10.1103/PhysRevB.108.214418
Citación:
Physical Review B, 108(21), (2023); doi:10.1103/PhysRevB.108.214418
Resumen:

We propose a method to determine the magnetic exchange interaction and onsite anisotropy tensors of extended Heisenberg spin models from density functional theory including relativistic effects. The method is based on the Liechtenstein-Katsnelson-Antropov-Gubanov torque formalism, whereby energy variations upon infinitesimal rotations are performed. We assume that the Kohn-Sham Hamiltonian is expanded in a nonorthogonal basis set of pseudoatomic orbitals. We define local operators that are both Hermitian and satisfy relevant sum rules. We demonstrate that in the presence of spin-orbit coupling a correct mapping from the density functional total energy to a spin model that relies on the rotation of the exchange field part of the Hamiltonian can not be accounted for by transforming the full Hamiltonian. We derive a set of sum rules that pose stringent validity tests on any specific calculation. We showcase the flexibility and accuracy of the method by computing the exchange and anisotropy tensors of both well-studied magnetic nanostructures and of recently synthesized two-dimensional magnets. Specifically, we benchmark our approach against the established Korringa-Kohn-Rostoker Green's function method and show that they agree well. Finally, we demonstrate how the application of biaxial strain on the two-dimensional magnet T−CrTe2 can trigger a magnetic phase transition.

We propose a method to determine the magnetic exchange interaction and onsite anisotropy tensors of extended Heisenberg spin models from density functional theory including relativistic effects. The method is based on the Liechtenstein-Katsnelson-Antropov-Gubanov torque formalism, whereby energy variations upon infinitesimal rotations are performed. We assume that the Kohn-Sham Hamiltonian is expanded in a nonorthogonal basis set of pseudoatomic orbitals. We define local operators that are both Hermitian and satisfy relevant sum rules. We demonstrate that in the presence of spin-orbit coupling a correct mapping from the density functional total energy to a spin model that relies on the rotation of the exchange field part of the Hamiltonian can not be accounted for by transforming the full Hamiltonian. We derive a set of sum rules that pose stringent validity tests on any specific calculation. We showcase the flexibility and accuracy of the method by computing the exchange and anisotropy tensors of both well-studied magnetic nanostructures and of recently synthesized two-dimensional magnets. Specifically, we benchmark our approach against the established Korringa-Kohn-Rostoker Green's function method and show that they agree well. Finally, we demonstrate how the application of biaxial strain on the two-dimensional magnet T−CrTe2 can trigger a magnetic phase transition.

URI:
https://hdl.handle.net/10651/74167
ISSN:
2469-9950
DOI:
10.1103/PhysRevB.108.214418
Colecciones
  • Artículos [37532]
Ficheros en el ítem
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image