Mostrar el registro sencillo del ítem

Predicting the critical superconducting temperature using the random forest, mlp neural network, m5 model tree and multivariate linear regression

dc.contributor.authorGarcía Nieto, Paulino José 
dc.contributor.authorGarcía Gonzalo, María Esperanza 
dc.contributor.authorMenéndez García, Luis Alfonso
dc.contributor.authorÁlvarez de Prado, Laura
dc.contributor.authorBernardo Sánchez, Antonio 
dc.date.accessioned2024-08-26T08:32:57Z
dc.date.available2024-08-26T08:32:57Z
dc.date.issued2024
dc.identifier.citationAlexandria Engineering Journal, 86, p. 144-156 (2024); doi:10.1016/j.aej.2023.11.034
dc.identifier.issn1110-0168
dc.identifier.urihttps://hdl.handle.net/10651/74123
dc.description.abstractUsing a random forest regression (RFR) machine learning technique, the critical temperature (Tc) of a superconductor was predicted in the context of Industry 4.0 in this study using features derived from the material’s physico-chemical properties, containing atomic mass, electron affinity, atomic radius, valence, and thermal conductivity. The same experimental data were also fitted with multilayer perceptron (MLP) artificial neural networks (ANN), M5 model tree and multivariate linear regression (MLR) model for comparison. The current investigation’s findings show that the proposed RFR–relied model can successfully forecast the critical temperature of a superconductor. Additionally, the Tc estimate was reached with a correlation coefficient of 0.9565 and a coefficient of determination 0.9146, when the observed dataset was used to test this unique technique. Additionally, the outcomes from the MLP, M5, and MLR models are obviously worse than those from the RFR–relied model. When it comes to fully comprehending the superconductivity, this investigation is noteworthy. Regarding forecasting effectiveness and feature reduction rate, the RFR approach has obvious advantages and generalizability, and it also demonstrates suitability for high-temperature superconductor Tc forecasting. In fact, it offers a practical and affordable approach to data-driven superconductor investigation.
dc.description.sponsorshipThe University of Oviedo's Department of Mathematics generously provided computational assistance, which the authors gratefully acknowledge. Likewise, the authors would like to thank Anthony Ashworth for revising this research paper in English.
dc.format.extentp. 144-156
dc.language.isoeng
dc.relation.ispartofAlexandria Engineering Journal
dc.rights© 2023 The Author(s).
dc.rightsCC Reconocimiento – No Comercial – Sin Obra Derivada 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceScopus
dc.source.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85178343329&doi=10.1016%2fj.aej.2023.11.034&partnerID=40&md5=d2a020f6e5ee8fb2b5144da2a78b2bb5
dc.titlePredicting the critical superconducting temperature using the random forest, mlp neural network, m5 model tree and multivariate linear regression
dc.typejournal article
dc.identifier.doi10.1016/j.aej.2023.11.034
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.aej.2023.11.034
dc.rights.accessRightsopen access
authorProfile.author
dc.type.hasVersionVoR


Ficheros en el ítem

untranslated

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2023 The Author(s).
Este ítem está sujeto a una licencia Creative Commons