Predicting the critical superconducting temperature using the random forest, mlp neural network, m5 model tree and multivariate linear regression
Fecha de publicación:
2024
Versión del editor:
Citación:
Alexandria Engineering Journal, 86, p. 144-156 (2024); doi:10.1016/j.aej.2023.11.034
Descripción física:
p. 144-156
ISSN:
Patrocinado por:
The University of Oviedo's Department of Mathematics generously provided computational assistance, which the authors gratefully acknowledge. Likewise, the authors would like to thank Anthony Ashworth for revising this research paper in English.
Colecciones
- Artículos [36140]