Métodos que explotan información adjunta para predecir variables objetivo desconocidas.
Author:
Director:
Centro/Departamento/Otros:
Subject:
Contaminantes atmosféricos
Estaciones meteorológicas
Publication date:
Descripción física:
Abstract:
Esta investigación surge de la necesidad de predecir la concentración de contaminantes atmosféricos en las estaciones meteorológicas. La contaminación atmosférica depende de la ubicación de las estaciones (condiciones meteorológicas y actividades en el entorno). Con frecuencia, la información circundante no se tiene en cuenta en el proceso de aprendizaje. Esta información es conocida de antemano en ausencia de condiciones meteorológicas no observadas y se mantiene constante para la misma estación. Tener en cuenta la información de los alrededores como información adjunta permite generalizar la predicción de la concentración de contaminantes a nuevas estaciones, lo que lleva a un escenario de regresión de aprendizaje de tiro cero.
Esta investigación surge de la necesidad de predecir la concentración de contaminantes atmosféricos en las estaciones meteorológicas. La contaminación atmosférica depende de la ubicación de las estaciones (condiciones meteorológicas y actividades en el entorno). Con frecuencia, la información circundante no se tiene en cuenta en el proceso de aprendizaje. Esta información es conocida de antemano en ausencia de condiciones meteorológicas no observadas y se mantiene constante para la misma estación. Tener en cuenta la información de los alrededores como información adjunta permite generalizar la predicción de la concentración de contaminantes a nuevas estaciones, lo que lleva a un escenario de regresión de aprendizaje de tiro cero.
Local Notes:
DT(SE) 2023-134
Collections
- Tesis [7606]