Mejoras en la optimización de hiperparámetros bajo cambios en la distribución.
Author:
Director:
Centro/Departamento/Otros:
Subject:
Optimización de hiperparámetros
Auto Aprendizaje Automático (AutoML).
Publication date:
Descripción física:
Abstract:
Actualmente, se aprecia un crecimiento en la demanda de sistemas de aprendizaje automático con la mínima interacción humana posible. Esta necesidad ha dado lugar a lo que se conoce como Auto Aprendizaje Automático (AutoML). La optimización de hiperparámetros (HPO) de los sistemas de aprendizaje automático es uno de los núcleos de los sistemas de AutoML. Este proceso involucra encontrar una configuración de valores para los hiperparámetros que permita obtener una estructura óptima para un modelo de aprendizaje automático. El principal objetivo de la investigación que se aborda en este trabajo ha consistido en incorporar mejoras en el proceso de optimización de hiperparámetros cuando hay cambios en la distribución de los atributos (covariate shift). Son dos las mejoras que se llevaron a cabo.
Actualmente, se aprecia un crecimiento en la demanda de sistemas de aprendizaje automático con la mínima interacción humana posible. Esta necesidad ha dado lugar a lo que se conoce como Auto Aprendizaje Automático (AutoML). La optimización de hiperparámetros (HPO) de los sistemas de aprendizaje automático es uno de los núcleos de los sistemas de AutoML. Este proceso involucra encontrar una configuración de valores para los hiperparámetros que permita obtener una estructura óptima para un modelo de aprendizaje automático. El principal objetivo de la investigación que se aborda en este trabajo ha consistido en incorporar mejoras en el proceso de optimización de hiperparámetros cuando hay cambios en la distribución de los atributos (covariate shift). Son dos las mejoras que se llevaron a cabo.
Local Notes:
DT(SE) 2023-133
Collections
- Tesis [7520]