RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Tesis
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Tesis
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs
Las tesis leídas en la Universidad de Oviedo se pueden consultar en el Campus de El Milán previa solicitud por correo electrónico: buotesis@uniovi.es

Mejoras en la optimización de hiperparámetros bajo cambios en la distribución.

Autor(es) y otros:
Fernández Díaz, Laura
Director(es):
Quevedo Pérez, José RamónAutoridad Uniovi; Montañés Roces, ElenaAutoridad Uniovi
Centro/Departamento/Otros:
Informática, Departamento deAutoridad Uniovi
Palabra(s) clave:

Optimización de hiperparámetros

Auto Aprendizaje Automático (AutoML).

Fecha de publicación:
2023-06-01
Descripción física:
139 p.
Resumen:

Actualmente, se aprecia un crecimiento en la demanda de sistemas de aprendizaje automático con la mínima interacción humana posible. Esta necesidad ha dado lugar a lo que se conoce como Auto Aprendizaje Automático (AutoML). La optimización de hiperparámetros (HPO) de los sistemas de aprendizaje automático es uno de los núcleos de los sistemas de AutoML. Este proceso involucra encontrar una configuración de valores para los hiperparámetros que permita obtener una estructura óptima para un modelo de aprendizaje automático. El principal objetivo de la investigación que se aborda en este trabajo ha consistido en incorporar mejoras en el proceso de optimización de hiperparámetros cuando hay cambios en la distribución de los atributos (covariate shift). Son dos las mejoras que se llevaron a cabo.

Actualmente, se aprecia un crecimiento en la demanda de sistemas de aprendizaje automático con la mínima interacción humana posible. Esta necesidad ha dado lugar a lo que se conoce como Auto Aprendizaje Automático (AutoML). La optimización de hiperparámetros (HPO) de los sistemas de aprendizaje automático es uno de los núcleos de los sistemas de AutoML. Este proceso involucra encontrar una configuración de valores para los hiperparámetros que permita obtener una estructura óptima para un modelo de aprendizaje automático. El principal objetivo de la investigación que se aborda en este trabajo ha consistido en incorporar mejoras en el proceso de optimización de hiperparámetros cuando hay cambios en la distribución de los atributos (covariate shift). Son dos las mejoras que se llevaron a cabo.

URI:
https://hdl.handle.net/10651/71806
Notas Locales:

DT(SE) 2023-133

Colecciones
  • Tesis [7677]
Ficheros en el ítem
Thumbnail
untranslated
Archivo protegido (1.695Mb)
Embargado hasta:2033-06-01
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image