RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Metal Organic Frameworks Assembled from Y(III), Na(I), and Chiral Flexible-Achiral Rigid Dicarboxylates

Author:
Amghouz, ZakariaeUniovi authority; Roces Fernández, LauraUniovi authority; García-Granda, SantiagoUniovi authority; García Menéndez, José RubénUniovi authority; Souhail, Badredine; Mafra, Luís Miguel Monteiro; Shi, Fha-Nian; Rocha, João Carlos Matias Celestino Gomes da
Publication date:
2010
Publisher version:
http://dx.doi.org/10.1021/ic100867w
Citación:
Inorganic Chemistry, 49(17), p. 7917-7926 (2010); doi:10.1021/ic100867w
Descripción física:
p. 7917-7926
Abstract:

New chiral metal organic frameworks, assembled from Y(III), Na(I), and chiral flexible-achiral rigid dicarboxylate ligands, formulated as [NaY(Tart)(BDC)(H2O)2] (1) and [NaY(Tart)(biBDC)(H2O)2] (2) (H2Tart = Tartaric acid; H2BDC = Terephthalic acid; H2biBDC = Biphenyl-4,4′-dicarboxylic acid), were obtained as single phases under hydrothermal conditions. Their structures were solved by single-crystal X-ray diffraction (XRD), and characterized by 13C CPMAS NMR, thermal analyses (thermogravimetry-mass spectrometry (TG-MS) and differential scanning calorimetry (DSC)), and X-ray thermodiffractometry. Both compounds crystallize in the orthorhombic chiral space group C2221 with a = 6.8854(2) Å, b = 30.3859(7) Å, c = 7.4741(2) Å for 1, and a = 6.8531(2) Å, b = 39.0426(8) Å, c = 7.4976(2) Å for 2. 1 and 2 are layered structures whose three-dimensional stability is ensured by strong hydrogen bond interactions. The dehydration of both compounds is accompanied by phase transformation, while the spontaneous rehydration process is characterized by different kinetics, fast in the case of 1 and slow for 2.

New chiral metal organic frameworks, assembled from Y(III), Na(I), and chiral flexible-achiral rigid dicarboxylate ligands, formulated as [NaY(Tart)(BDC)(H2O)2] (1) and [NaY(Tart)(biBDC)(H2O)2] (2) (H2Tart = Tartaric acid; H2BDC = Terephthalic acid; H2biBDC = Biphenyl-4,4′-dicarboxylic acid), were obtained as single phases under hydrothermal conditions. Their structures were solved by single-crystal X-ray diffraction (XRD), and characterized by 13C CPMAS NMR, thermal analyses (thermogravimetry-mass spectrometry (TG-MS) and differential scanning calorimetry (DSC)), and X-ray thermodiffractometry. Both compounds crystallize in the orthorhombic chiral space group C2221 with a = 6.8854(2) Å, b = 30.3859(7) Å, c = 7.4741(2) Å for 1, and a = 6.8531(2) Å, b = 39.0426(8) Å, c = 7.4976(2) Å for 2. 1 and 2 are layered structures whose three-dimensional stability is ensured by strong hydrogen bond interactions. The dehydration of both compounds is accompanied by phase transformation, while the spontaneous rehydration process is characterized by different kinetics, fast in the case of 1 and slow for 2.

URI:
http://hdl.handle.net/10651/7076
ISSN:
0020-1669
Identificador local:

20100277

DOI:
10.1021/ic100867w
Collections
  • Artículos [37532]
Files in this item
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image