RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Near-field model for the computation of coverage generated by an IRS: formulation and validation

Autor(es) y otros:
Fernández Vaquero, ÁlvaroAutoridad Uniovi; Martínez-de-Rioja, Daniel; Martínez-de-Rioja, Eduardo; Arrebola Baena, ManuelAutoridad Uniovi; Encinar, José A.; Rodríguez Pino, MarcosAutoridad Uniovi
Palabra(s) clave:

IRS, near-field model, aperture antennas.

Fecha de publicación:
2022-07-06
Versión del editor:
https://doi.org/10.1109/NEMO51452.2022.10038955
Resumen:

In this work a model to compute the near-field of an Intelligent Reflective Surface is presented. The proposed approach computes the near-field by means of the Huygens’ Principle and the Principle of Superposition using the formulation of classical antenna apertures. The model is fully described and numerically simulated by designing a reflectarray at mmWave frequency and radiating in the Fresnel zone, similar to an IRS in an indoor scenario for 5G FR2 communications. The design is manufactured to experimentally validate the proposed model. The measurements agree with simulations for the copolar and cross-polar components of the radiated near-field. This approach presents a simply model to compute the near-field which provides a good prediction of the radiated near-field.

In this work a model to compute the near-field of an Intelligent Reflective Surface is presented. The proposed approach computes the near-field by means of the Huygens’ Principle and the Principle of Superposition using the formulation of classical antenna apertures. The model is fully described and numerically simulated by designing a reflectarray at mmWave frequency and radiating in the Fresnel zone, similar to an IRS in an indoor scenario for 5G FR2 communications. The design is manufactured to experimentally validate the proposed model. The measurements agree with simulations for the copolar and cross-polar components of the radiated near-field. This approach presents a simply model to compute the near-field which provides a good prediction of the radiated near-field.

Descripción:

IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO) (2022. Limoges, France)

URI:
http://hdl.handle.net/10651/66364
Patrocinado por:

The authors would like to thank the support received from the Spanish Ministry of Science and Innovation and the Spanish Research Agency within the project ENHANCE-5G (PID2020-114172RB-C21-2/AEI/10.13039/501100011033), the Government of Principality of Asturias under project AYUD/2021/51706 and by the Spanish Ministry of Economic Affairs and Digital Transformation by the NextGenerationEU under the Recovery plan for Europe and the Recovery and Resilience Facility, within the project DISRADIO TSI-063000-2021-82.

Colecciones
  • Ponencias, Discursos y Conferencias [4228]
Ficheros en el ítem
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image