Mostrar el registro sencillo del ítem
Location-free robust scale estimates for fuzzy data
dc.contributor.author | Rosa de Sáa, Sara de la | |
dc.contributor.author | Lubiano Gómez, María Asunción | |
dc.contributor.author | Sinova Fernández, Beatriz | |
dc.contributor.author | Filzmoser, Peter | |
dc.contributor.author | Gil Álvarez, María Ángeles | |
dc.date.accessioned | 2021-02-05T09:02:23Z | |
dc.date.available | 2021-02-05T09:02:23Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | IEEE Transactions on Fuzzy Systems, 29(6), p. 1682-1694 (2020); doi: 10.1109/TFUZZ.2020.2984203 | |
dc.identifier.issn | 1063-6706 | |
dc.identifier.uri | http://hdl.handle.net/10651/57759 | |
dc.description.abstract | In analyzing fuzzy-valued imprecise data statistically, scale measures/estimates play an important role. Scale measures/estimates of datasets are often considered, among others, to descriptively summarize them, to compare the dispersion or the spread of different datasets, to standardize data, to state rules for detecting outliers, to formulate regression objective functions, and so on. To be robust, an estimate of scale should have a finite breakdown point close to 50% (i.e., around half data should be replaced by ‘outliers’ to make the estimate break down, either in the sense of exploding to infinity or imploding to zero). In this respect, the Median Distance Deviation about the median (MDD) for fuzzy datasets has already been introduced and its robust behaviour has been proved. In contrast to the real-valued case, computation of the MDD for fuzzy data is much more complex and cannot be exactly but approximately performed in general. | |
dc.description.sponsorship | This research has been partially supported by the Principality of Asturias/ FEDER Grant GRUPIN-IDI2018-000132 and the Spanish Ministry of Economy and Competitiveness Grant MTM2015-63971-P. | spa |
dc.language.iso | eng | spa |
dc.relation.ispartof | IEEE Transactions on Fuzzy Systems | spa |
dc.rights | CC Reconocimiento - No Comercial - Sin Obra Derivada 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.title | Location-free robust scale estimates for fuzzy data | spa |
dc.type | journal article | spa |
dc.identifier.doi | 10.1109/TFUZZ.2020.2984203 | |
dc.relation.projectID | GRUPIN-IDI2018-000132 | spa |
dc.relation.projectID | Ministerio de Economía y Competitividad/MTM2015-63971-P | spa |
dc.relation.publisherversion | http://dx.doi.org/10.1109/TFUZZ.2020.2984203 | spa |
dc.rights.accessRights | open access | spa |
dc.type.hasVersion | AM |
Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Artículos [37127]
-
Estadística e Investigación Operativa [289]
-
Investigaciones y Documentos OpenAIRE [8189]
Publicaciones resultado de proyectos financiados con fondos públicos