RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Improving Wearable-based Fall Detection with unsupervised learning

Autor(es) y otros:
Fáñez, Mirko; Villar Flecha, José RamónAutoridad Uniovi; Cal Marín, Enrique Antonio de laAutoridad Uniovi; González Suárez, Víctor ManuelAutoridad Uniovi; Sedano, Javier
Palabra(s) clave:

Fall detection

Unsupervised learning

Clustering

One-class classifiers

Fecha de publicación:
2020
Versión del editor:
http://dx.doi.org/10.1093/jigpal/jzaa064
Citación:
Logic Journal of the IGPLLogic journal of the IGPL, 30(2), p. 314-325 (2022); doi:10.1093/jigpal/jzaa064
Descripción física:
p. 314-325
Resumen:

Fall detection (FD) is a challenging task that has received the attention of the research community in the recent years. This study focuses on FD using data gathered from wearable devices with tri-axial accelerometers (3DACC), developing a solution centered in elderly people living autonomously. This research includes three different ways to improve a FD method: i) an analysis of the event detection stage, comparing several alternatives, ii) an evaluation of features to extract for each detected event and, iii) an appraisal of up to 6 different clustering scenarios to split the samples in subsets that might enhance the classification. For each clustering scenario, a specific classification stage is defined. The experimentation includes publicly available simulated fall data sets. Results show the guidelines for defining a more robust and efficient FD method for on-wrist 3DACC wearable devices.

Fall detection (FD) is a challenging task that has received the attention of the research community in the recent years. This study focuses on FD using data gathered from wearable devices with tri-axial accelerometers (3DACC), developing a solution centered in elderly people living autonomously. This research includes three different ways to improve a FD method: i) an analysis of the event detection stage, comparing several alternatives, ii) an evaluation of features to extract for each detected event and, iii) an appraisal of up to 6 different clustering scenarios to split the samples in subsets that might enhance the classification. For each clustering scenario, a specific classification stage is defined. The experimentation includes publicly available simulated fall data sets. Results show the guidelines for defining a more robust and efficient FD method for on-wrist 3DACC wearable devices.

URI:
http://hdl.handle.net/10651/56920
ISSN:
1368-9894
DOI:
10.1093/jigpal/jzaa064
Patrocinado por:

Spanish Ministry of Science and Innovation [MINECO-TIN2017-84804-R]; Asturias Regional Government [FCGRUPIN-IDI/2018/000226]; Instituto para la Competitividad Empresarial de Castilla y León [CCTT2/18/BU/0002]

Colecciones
  • Artículos [37532]
  • Ingeniería Eléctrica, Electrónica, de Comunicaciones y de Sistemas [1086]
  • Investigaciones y Documentos OpenAIRE [8365]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (384.9Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image