RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Automatic plankton quantification using deep features

Autor(es) y otros:
González González, PabloAutoridad Uniovi; Castaño Gutiérrez, AlbertoAutoridad Uniovi; Peacock, Emily E.; Díez Peláez, JorgeAutoridad Uniovi; Coz Velasco, Juan José delAutoridad Uniovi; Sosikb, Heidi M.
Palabra(s) clave:

Abundance estimation

Deep learning

Convolutional neural networks

Phytoplankton

Fecha de publicación:
2019-07
Editorial:

Oxford University Press

Versión del editor:
https://doi.org/10.1093/plankt/fbz023
Citación:
Journal of Plankton Research, 41 (4), p. 449-463 (2019); doi:10.1093/plankt/fbz023
Descripción física:
p. 449-463
Resumen:

The study of marine plankton data is vital to monitor the health of the world’s oceans. In recent decades, automatic plankton recognition systems have proved useful to address the vast amount of data collected by specially engineered in situ digital imaging systems. At the beginning, these systems were developed and put into operation using traditional automatic classification techniques, which were fed with handdesigned local image descriptors (such as Fourier features), obtaining quite successful results. In the past few years, there have been many advances in the computer vision community with the rebirth of neural networks. In this paper, we leverage how descriptors computed using Convolutional Neural Networks (CNNs) trained with out-of-domain data are useful to replace hand-designed descriptors in the task of estimating the prevalence of each plankton class in a water sample. To achieve this goal, we have designed a broad set of experiments that show how effective these deep features are when working in combination with state-of-the-art quantification algorithms.

The study of marine plankton data is vital to monitor the health of the world’s oceans. In recent decades, automatic plankton recognition systems have proved useful to address the vast amount of data collected by specially engineered in situ digital imaging systems. At the beginning, these systems were developed and put into operation using traditional automatic classification techniques, which were fed with handdesigned local image descriptors (such as Fourier features), obtaining quite successful results. In the past few years, there have been many advances in the computer vision community with the rebirth of neural networks. In this paper, we leverage how descriptors computed using Convolutional Neural Networks (CNNs) trained with out-of-domain data are useful to replace hand-designed descriptors in the task of estimating the prevalence of each plankton class in a water sample. To achieve this goal, we have designed a broad set of experiments that show how effective these deep features are when working in combination with state-of-the-art quantification algorithms.

URI:
http://hdl.handle.net/10651/53568
ISSN:
0142-7873; 1464-3774
DOI:
10.1093/plankt/fbz023
Patrocinado por:

Contributions from HMS and EEP were supported in part by the Simons Foundation, by the National Oceanic and Atmospheric Administration (NOAA) through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158, and by the National Science Foundation (NSF; Grants CCF-1539256, OCE-1655686)

Colecciones
  • Artículos [37541]
  • Informática [875]
  • Investigaciones y Documentos OpenAIRE [8415]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (1.364Mb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image