RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Sensorless Unbalance Modelling and Estimation as an Ancillary Service for LV 4-Wire/3-Phase Power Converters

Author:
Suárez González, AndrésUniovi authority; García Fernández, PabloUniovi authority; Navarro Rodríguez, ÁngelUniovi authority; Villa Fernández, GeberUniovi authority; Cano Rodríguez, José ManuelUniovi authority
Publication date:
2019
Editorial:

IEEE

Publisher version:
http://dx.doi.org/10.1109/TIA.2019.2918046
Citación:
IEEE Transactions on Industry Applications (2019) doi:10.1109/TIA.2019.2918046
Abstract:

This paper describes a method to provide LV four-wire three-phase power converters with the capability of unbalance estimation as an ancillary service to the main role that they play in the distribution system (distributed generator, energy storage system, drive, etc). Typically, dedicated grid/load current sensors are needed to effectively comply with unbalance compensation tasks, increasing system cost and reducing reliability. This is due to the difficulties that arises in the extraction of the zero and negative voltage components from the voltages at the point of common coupling, such as the inadequate resolution of full-scaled voltage sensors and limited spectral separation. In this paper, the proposed method does not rely on additional sensors to those typically used in VSCs, and in any case, those sensors are limited to the point of connection of the power converter. Impedance estimation only using converter-side current sensors is implemented by adding a high frequency voltage excitation over the fundamental command. A new model approach is proposed for the real-time extraction of system impedance using a complex-valued compact form. Considering the voltage source at that frequency to be unique in the grid, it will be proved the impedance can be estimated and, thus, the resulting negative sequence current which is used for unbalance compensation. For the zero sequence, an especial arrangement of the converter voltage sensors together with a repetitive controller is used.

This paper describes a method to provide LV four-wire three-phase power converters with the capability of unbalance estimation as an ancillary service to the main role that they play in the distribution system (distributed generator, energy storage system, drive, etc). Typically, dedicated grid/load current sensors are needed to effectively comply with unbalance compensation tasks, increasing system cost and reducing reliability. This is due to the difficulties that arises in the extraction of the zero and negative voltage components from the voltages at the point of common coupling, such as the inadequate resolution of full-scaled voltage sensors and limited spectral separation. In this paper, the proposed method does not rely on additional sensors to those typically used in VSCs, and in any case, those sensors are limited to the point of connection of the power converter. Impedance estimation only using converter-side current sensors is implemented by adding a high frequency voltage excitation over the fundamental command. A new model approach is proposed for the real-time extraction of system impedance using a complex-valued compact form. Considering the voltage source at that frequency to be unique in the grid, it will be proved the impedance can be estimated and, thus, the resulting negative sequence current which is used for unbalance compensation. For the zero sequence, an especial arrangement of the converter voltage sensors together with a repetitive controller is used.

URI:
http://hdl.handle.net/10651/51285
ISSN:
0093-9994; 1939-9367
DOI:
10.1109/TIA.2019.2918046
Patrocinado por:

The present work has been partially supported by the predoctoral grants program Severo Ochoa for the formation in research and university teaching of Principado de Asturias PCTI-FICYT under the grant ID BP14-135. This work is also supported in part by the Research, Technological Development and Innovation Program Oriented to the Society Challenges of the Spanish Ministry of Economy and Competitiveness under grants ENE2016-77919-R and DPI2017-89186-R and by the European Union through ERFD Structural Funds (FEDER).

Collections
  • Artículos [37550]
  • Ingeniería Eléctrica, Electrónica, de Comunicaciones y de Sistemas [1091]
  • Investigaciones y Documentos OpenAIRE [8421]
Files in this item
Thumbnail
untranslated
Postprint (2.132Mb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image