RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Sistema de GPR embarcado en un UAV para la detección de objetos ocultos enterrados

Author:
García Fernández, MaríaUniovi authority; Álvarez López, YuriUniovi authority; Arboleya Arboleya, AnaUniovi authority; Las Heras Andrés, Fernando LuisUniovi authority; González Valdés, Borja; Rodríguez Vaqueiro, Yolanda; Pino García, Antonio
Subject:

drones

georradar

GPR

UAV

imaging

minas antipersona

Publication date:
2018
Editorial:

Subdirección General de Planificación, Tecnología e Innovación

Descripción física:
p. 15-19
Abstract:

This work presents a novel system to obtain images from the underground based on Ground Penetrating Radar (GPR). The proposed system is composed by a radar module mounted on board an Unmanned Aerial Vehicle (UAV), which allows the safe inspection of difficult-to-access areas without being in contact with the soil. Therefore, it can be used to detect dangerous buried objects, such as landmines. The radar measurements are coherently combined using a Synthetic Aperture Radar (SAR) algorithm, which requires a cm-level accurate positioning system. In addition, a clutter removal technique is applied to mitigate the reflection at the air-soil interface (due to the impedance mismatching). Besides the aforementioned advantages, the system can detect both metallic and dielectric targets (due to the use of a radar instead of a metal detector) and it allows to obtain high-resolution underground images (due to the SAR processing). The algorithms and the UAV payload are validated with measurements in both controlled and real scenarios, showing the feasibility of the proposed system.

This work presents a novel system to obtain images from the underground based on Ground Penetrating Radar (GPR). The proposed system is composed by a radar module mounted on board an Unmanned Aerial Vehicle (UAV), which allows the safe inspection of difficult-to-access areas without being in contact with the soil. Therefore, it can be used to detect dangerous buried objects, such as landmines. The radar measurements are coherently combined using a Synthetic Aperture Radar (SAR) algorithm, which requires a cm-level accurate positioning system. In addition, a clutter removal technique is applied to mitigate the reflection at the air-soil interface (due to the impedance mismatching). Besides the aforementioned advantages, the system can detect both metallic and dielectric targets (due to the use of a radar instead of a metal detector) and it allows to obtain high-resolution underground images (due to the SAR processing). The algorithms and the UAV payload are validated with measurements in both controlled and real scenarios, showing the feasibility of the proposed system.

URI:
http://hdl.handle.net/10651/51029
ISSN:
2444-4839
Collections
  • Ingeniería Eléctrica, Electrónica, de Comunicaciones y de Sistemas [1086]
  • Ponencias, Discursos y Conferencias [4228]
Files in this item
Thumbnail
untranslated
postprint (198.7Kb)
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image