RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Optimizing novelty and diversity in recommendations

Autor(es) y otros:
Díez Peláez, JorgeAutoridad Uniovi; Martínez-Rego, Daniel; Alonso-Betanzos, Amparo; Luaces Rodríguez, ÓscarAutoridad Uniovi; Bahamonde Rionda, AntonioAutoridad Uniovi
Fecha de publicación:
2018
Editorial:

Springer

Versión del editor:
https://doi.org/10.1007/s13748-018-0158-4
Citación:
Progress in Artificial Intelligence, 8(1), p. 1-9 (2018); doi:10.1007/s13748-018-0158-4
Descripción física:
p. 101-109
Resumen:

The articles in the long tail are those that are not popular in some sense, but all together often represent a large proportion of the products covered by a recommender system. For companies, it is important to recommend these items that otherwise could be unknown to their customers. It is also interesting for users because knowing about these items might constitute a pleasant surprise. But long-tail items are not the only we might wish to recommend. Thus, some companies promote products on seasonal offers. It is a challenge to manage the preferences on items whose interaction with users is scarce. There is a trade-off between recommending items that users like and those belonging to a certain kind. We present a framework to address recommendations where the items will have a weight that quantifies our interest in recommending them in a broad sense. Then, we derive a factorization method that optimizes the award of the recommendations. To test the method, we present an exhaustive experimentation with a real-world dataset on digital news. We show that it is possible to improve dramatically the novelty (those items of special interest) and diversity of items with a tiny penalization in the accuracy

The articles in the long tail are those that are not popular in some sense, but all together often represent a large proportion of the products covered by a recommender system. For companies, it is important to recommend these items that otherwise could be unknown to their customers. It is also interesting for users because knowing about these items might constitute a pleasant surprise. But long-tail items are not the only we might wish to recommend. Thus, some companies promote products on seasonal offers. It is a challenge to manage the preferences on items whose interaction with users is scarce. There is a trade-off between recommending items that users like and those belonging to a certain kind. We present a framework to address recommendations where the items will have a weight that quantifies our interest in recommending them in a broad sense. Then, we derive a factorization method that optimizes the award of the recommendations. To test the method, we present an exhaustive experimentation with a real-world dataset on digital news. We show that it is possible to improve dramatically the novelty (those items of special interest) and diversity of items with a tiny penalization in the accuracy

URI:
http://hdl.handle.net/10651/50960
ISSN:
2192-6352; 2192-6360
DOI:
10.1007/s13748-018-0158-4
Patrocinado por:

This work was funded by grants TIN2015-65069-C2-1-R and TIN2015-65069-C2-2-R from Ministerio de Economía y Competitividad

Colecciones
  • Artículos [37541]
  • Informática [875]
  • Investigaciones y Documentos OpenAIRE [8416]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (700.9Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image