RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Sensor network and inertial positioning hybridisation for indoor location and tracking applications

Author:
Álvarez López, YuriUniovi authority; Álvarez Narciandi, GuillermoUniovi authority; Las Heras Andrés, Fernando LuisUniovi authority
Subject:

Internet of Things

Tracking

Sensor networks

ZigBee

Publication date:
2017
Editorial:

Inderscience (Geneva, SWITZERLAND)

Publisher version:
http://dx.doi.org/10.1504/IJSNET.2017.085977
Citación:
International Journal of Sensor Networks, 24(4), p. 242-252 (2017); doi:10.1504/IJSNET.2017.085977
Descripción física:
p. 242-252
Abstract:

An indoor location system (ILS) for practical asset and people tracking in indoor scenarios using received signal strength (RSS) ZigBee-based sensor network and inertial sensors is presented. A novel algorithm that uses differential signal levels gathered from a set of transmitter nodes is developed for processing RSS data. These levels are introduced into a cost function whose minimum gives the asset location estimation. The use of differential field levels-based algorithm avoids the need of system calibration due to signal strength fluctuation. Moreover, position accuracy is improved by adding inertial sensor information. The method is tested in a real scenario, demonstrating practical indoor positioning when combining ZigBee-based sensor network and inertial sensors information. The influence of the number of ZigBee nodes on the position estimation accuracy has been analysed

An indoor location system (ILS) for practical asset and people tracking in indoor scenarios using received signal strength (RSS) ZigBee-based sensor network and inertial sensors is presented. A novel algorithm that uses differential signal levels gathered from a set of transmitter nodes is developed for processing RSS data. These levels are introduced into a cost function whose minimum gives the asset location estimation. The use of differential field levels-based algorithm avoids the need of system calibration due to signal strength fluctuation. Moreover, position accuracy is improved by adding inertial sensor information. The method is tested in a real scenario, demonstrating practical indoor positioning when combining ZigBee-based sensor network and inertial sensors information. The influence of the number of ZigBee nodes on the position estimation accuracy has been analysed

URI:
http://hdl.handle.net/10651/45615
ISSN:
1748-1287
DOI:
10.1504/IJSNET.2017.085977
Patrocinado por:

This work has been supported by the ‘ministerio de Economía y Competitividad’ of Spain/European regional development fund (ERDF) under project TEC2014-54005-P (MIRIIEM) and by the ‘Gobierno del principado de asturias’, asturias (Spain), under project GRUPIN14-114

Collections
  • Artículos [37532]
  • Ingeniería Eléctrica, Electrónica, de Comunicaciones y de Sistemas [1086]
  • Investigaciones y Documentos OpenAIRE [8365]
Files in this item
Thumbnail
untranslated
Postprint (1.850Mb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image