RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Sensor network and inertial positioning hybridisation for indoor location and tracking applications

Autor(es) y otros:
Álvarez López, YuriAutoridad Uniovi; Álvarez Narciandi, GuillermoAutoridad Uniovi; Las Heras Andrés, Fernando LuisAutoridad Uniovi
Palabra(s) clave:

Internet of Things

Tracking

Sensor networks

ZigBee

Fecha de publicación:
2017
Editorial:

Inderscience (Geneva, SWITZERLAND)

Versión del editor:
http://dx.doi.org/10.1504/IJSNET.2017.085977
Citación:
International Journal of Sensor Networks, 24(4), p. 242-252 (2017); doi:10.1504/IJSNET.2017.085977
Descripción física:
p. 242-252
Resumen:

An indoor location system (ILS) for practical asset and people tracking in indoor scenarios using received signal strength (RSS) ZigBee-based sensor network and inertial sensors is presented. A novel algorithm that uses differential signal levels gathered from a set of transmitter nodes is developed for processing RSS data. These levels are introduced into a cost function whose minimum gives the asset location estimation. The use of differential field levels-based algorithm avoids the need of system calibration due to signal strength fluctuation. Moreover, position accuracy is improved by adding inertial sensor information. The method is tested in a real scenario, demonstrating practical indoor positioning when combining ZigBee-based sensor network and inertial sensors information. The influence of the number of ZigBee nodes on the position estimation accuracy has been analysed

An indoor location system (ILS) for practical asset and people tracking in indoor scenarios using received signal strength (RSS) ZigBee-based sensor network and inertial sensors is presented. A novel algorithm that uses differential signal levels gathered from a set of transmitter nodes is developed for processing RSS data. These levels are introduced into a cost function whose minimum gives the asset location estimation. The use of differential field levels-based algorithm avoids the need of system calibration due to signal strength fluctuation. Moreover, position accuracy is improved by adding inertial sensor information. The method is tested in a real scenario, demonstrating practical indoor positioning when combining ZigBee-based sensor network and inertial sensors information. The influence of the number of ZigBee nodes on the position estimation accuracy has been analysed

URI:
http://hdl.handle.net/10651/45615
ISSN:
1748-1287
DOI:
10.1504/IJSNET.2017.085977
Patrocinado por:

This work has been supported by the ‘ministerio de Economía y Competitividad’ of Spain/European regional development fund (ERDF) under project TEC2014-54005-P (MIRIIEM) and by the ‘Gobierno del principado de asturias’, asturias (Spain), under project GRUPIN14-114

Colecciones
  • Artículos [37548]
  • Ingeniería Eléctrica, Electrónica, de Comunicaciones y de Sistemas [1091]
  • Investigaciones y Documentos OpenAIRE [8420]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (1.850Mb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image