RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

A methodology for the detection of relevant single nucleotide polymorphism in prostate cancer by means of multivariate adaptive regression splines and backpropagation artificial neural networks

Author:
Sánchez Lasheras, Juan Enrique; Tardón García, AdoninaUniovi authority; Fernández Tardón, GuillermoUniovi authority; Suárez Gómez, Sergio LuisUniovi authority; Martín Sánchez, V.; González Donquiles, Carmen; Cos Juez, Francisco Javier deUniovi authority
Publication date:
2018
Publisher version:
http://dx.doi.org/10.1007/978-3-319-67180-2_38
Serie:

Advances in Intelligent Systems and Computing, 649

Descripción física:
p. 391-399
Description:

SOCO 2017, ICEUTE 2017, CISIS 2017 (León. 2017)

URI:
http://hdl.handle.net/10651/45476
ISBN:
978-3-319-67179-6
ISSN:
2194-5357
DOI:
10.1007/978-3-319-67180-2_38
Collections
  • Ponencias, Discursos y Conferencias [4228]
Files in this item
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image