Adding Feasibility Constraints to a Ranking Rule under a Monotonicity Constraint
Publication date:
2015Abstract:
We propose a new point of view in the long-standing problem where several voters have expressed a linear order relation (or ranking) over a set of candidates. For a ranking a > b > c to represent a group’s opinion, it would be logical that the strength with which a > c is supported should not be less than the strength with which either a > b or b > c is supported. This intuitive property can be considered a monotonicity constraint, and has been addressed before. We extend previous approaches in the following way: as the voters are expressing linear orders, we can take the number of candidates between two candidates to be a measure of the degree to which one candidate is preferred to the other. In this way, intensity of support is both counted as the number of voters who indicate a > c is true, as well as the distance between a and c in these voters’ rankings. The resulting distributions serve as input for a natural ranking rule that is based on stochastic monotonicity and stochastic dominance. Adapting the previous methodology turns out to be non-trivial once we add some natural feasibility constraints
We propose a new point of view in the long-standing problem where several voters have expressed a linear order relation (or ranking) over a set of candidates. For a ranking a > b > c to represent a group’s opinion, it would be logical that the strength with which a > c is supported should not be less than the strength with which either a > b or b > c is supported. This intuitive property can be considered a monotonicity constraint, and has been addressed before. We extend previous approaches in the following way: as the voters are expressing linear orders, we can take the number of candidates between two candidates to be a measure of the degree to which one candidate is preferred to the other. In this way, intensity of support is both counted as the number of voters who indicate a > c is true, as well as the distance between a and c in these voters’ rankings. The resulting distributions serve as input for a natural ranking rule that is based on stochastic monotonicity and stochastic dominance. Adapting the previous methodology turns out to be non-trivial once we add some natural feasibility constraints
Description:
IFSA-EUSFLAT'2015: 16th World Congress of the International Fuzzy Systems Association and 9th Conference of the European Society for Fuzzy Logic and Technlogy, July 2015, Gijón, Spain
Patrocinado por
This work has been partially supported by Campus of International Excellence of University of Oviedo