RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Ponencias, Discursos y Conferencias
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Adding Feasibility Constraints to a Ranking Rule under a Monotonicity Constraint

Author:
Pérez Fernández, RaúlUniovi authority; Rademaker, Michael; Alonso Velázquez, PedroUniovi authority; Díaz Rodríguez, Susana IreneUniovi authority; Baets, Bernard de
Publication date:
2015
Abstract:

We propose a new point of view in the long-standing problem where several voters have expressed a linear order relation (or ranking) over a set of candidates. For a ranking a > b > c to represent a group’s opinion, it would be logical that the strength with which a > c is supported should not be less than the strength with which either a > b or b > c is supported. This intuitive property can be considered a monotonicity constraint, and has been addressed before. We extend previous approaches in the following way: as the voters are expressing linear orders, we can take the number of candidates between two candidates to be a measure of the degree to which one candidate is preferred to the other. In this way, intensity of support is both counted as the number of voters who indicate a > c is true, as well as the distance between a and c in these voters’ rankings. The resulting distributions serve as input for a natural ranking rule that is based on stochastic monotonicity and stochastic dominance. Adapting the previous methodology turns out to be non-trivial once we add some natural feasibility constraints

We propose a new point of view in the long-standing problem where several voters have expressed a linear order relation (or ranking) over a set of candidates. For a ranking a > b > c to represent a group’s opinion, it would be logical that the strength with which a > c is supported should not be less than the strength with which either a > b or b > c is supported. This intuitive property can be considered a monotonicity constraint, and has been addressed before. We extend previous approaches in the following way: as the voters are expressing linear orders, we can take the number of candidates between two candidates to be a measure of the degree to which one candidate is preferred to the other. In this way, intensity of support is both counted as the number of voters who indicate a > c is true, as well as the distance between a and c in these voters’ rankings. The resulting distributions serve as input for a natural ranking rule that is based on stochastic monotonicity and stochastic dominance. Adapting the previous methodology turns out to be non-trivial once we add some natural feasibility constraints

Description:

IFSA-EUSFLAT'2015: 16th World Congress of the International Fuzzy Systems Association and 9th Conference of the European Society for Fuzzy Logic and Technlogy, July 2015, Gijón, Spain

URI:
http://hdl.handle.net/10651/40573
Patrocinado por:

This work has been partially supported by Campus of International Excellence of University of Oviedo

Collections
  • Estadística e Investigación Operativa [295]
  • Ponencias, Discursos y Conferencias [4231]
Files in this item
Thumbnail
untranslated
PerezIFSA-EUSFLAT-2015.pdf (919.2Kb)
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image