RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Using A* for inference in probabilistic classifier chains

Autor(es) y otros:
Mena Waldo, DeinerAutoridad Uniovi; Montañés Roces, ElenaAutoridad Uniovi; Quevedo Pérez, José RamónAutoridad Uniovi; Coz Velasco, Juan José delAutoridad Uniovi
Fecha de publicación:
2015
Editorial:

Association for the Advancement of Artificial Intelligence

Versión del editor:
http://www.aaai.org/Library/IJCAI/ijcai15contents.php
Descripción física:
p. 3707-3713
Resumen:

Probabilistic Classifiers Chains (PCC) offers interesting properties to solve multi-label classification tasks due to its ability to estimate the joint probability of the labels. However, PCC presents the major drawback of having a high computational cost in the inference process required to predict new samples. Lately, several approaches have been proposed to overcome this issue, including beam search and an -Approximate algorithm based on uniform-cost search. Surprisingly, the obvious possibility of using heuristic search has not been considered yet. This paper studies this alternative and proposes an admisible heuristic that, applied in combination with A* algorithm, guarantees, not only optimal predictions in terms of subset 0/1 loss, but also that it always explores less nodes than -Approximate algorithm. In the experiments reported, the number of nodes explored by our method is less than two times the number of labels for all datasets analyzed. But, the difference in explored nodes must be large enough to compensate the overhead of the heuristic in order to improve prediction time. Thus, our proposal may be a good choice for complex multi-label problems

Probabilistic Classifiers Chains (PCC) offers interesting properties to solve multi-label classification tasks due to its ability to estimate the joint probability of the labels. However, PCC presents the major drawback of having a high computational cost in the inference process required to predict new samples. Lately, several approaches have been proposed to overcome this issue, including beam search and an -Approximate algorithm based on uniform-cost search. Surprisingly, the obvious possibility of using heuristic search has not been considered yet. This paper studies this alternative and proposes an admisible heuristic that, applied in combination with A* algorithm, guarantees, not only optimal predictions in terms of subset 0/1 loss, but also that it always explores less nodes than -Approximate algorithm. In the experiments reported, the number of nodes explored by our method is less than two times the number of labels for all datasets analyzed. But, the difference in explored nodes must be large enough to compensate the overhead of the heuristic in order to improve prediction time. Thus, our proposal may be a good choice for complex multi-label problems

Descripción:

IJCAI-15, Buenos Aires, Argentina, 25–31 de julio de 2015

URI:
http://hdl.handle.net/10651/35763
ISBN:
978-1-57735-738-4
Patrocinado por:

Research supported by MINECO, grant TIN2011-23558

Colecciones
  • Capítulos de libros [6535]
  • Informática [875]
  • Investigaciones y Documentos OpenAIRE [8420]
Ficheros en el ítem
Thumbnail
untranslated
Postprint (448.4Kb)
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image