RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Hierarchical classification using SVM

Autor(es) y otros:
Díez Peláez, JorgeAutoridad Uniovi; Coz Velasco, Juan José delAutoridad Uniovi
Fecha de publicación:
2009-11
Editorial:

Asociación Española para la Inteligencia Artificial

Descripción física:
p. 359-368
Resumen:

In hierarchical classi cations classes are arranged in a hierar- chy represented by a tree forest, and each example is labeled with a set of classes located in paths from roots to leaves or internal nodes. In other words, both multiple and partial paths are allowed. A straightforward approach to learn these classi ers consists in learning one binary classi- er per node of the hierarchy; the hierarchical classi er is then obtained using a top-down evaluation procedure. In this paper, we present a new approach where node classi ers are learned by binary SVMs weighted according to the hierarchy structure and the loss function used to mea- sure the goodness of the classi ers. The result is a collection of modular algorithms that are competitive with state-of-the-art approaches. More- over, the bene ts of the modularity include the possibility of parallel implementations, and the use of all available and well-known techniques to tune binary classi cation SVMs

In hierarchical classi cations classes are arranged in a hierar- chy represented by a tree forest, and each example is labeled with a set of classes located in paths from roots to leaves or internal nodes. In other words, both multiple and partial paths are allowed. A straightforward approach to learn these classi ers consists in learning one binary classi- er per node of the hierarchy; the hierarchical classi er is then obtained using a top-down evaluation procedure. In this paper, we present a new approach where node classi ers are learned by binary SVMs weighted according to the hierarchy structure and the loss function used to mea- sure the goodness of the classi ers. The result is a collection of modular algorithms that are competitive with state-of-the-art approaches. More- over, the bene ts of the modularity include the possibility of parallel implementations, and the use of all available and well-known techniques to tune binary classi cation SVMs

Descripción:

XIII Conferencia de , XIII Conferencia de la Asociación Española para la Inteligencia Artificial, CAEPIA–TTIA 2009, Sevilla, 9–13 de Noviembre de 2009

URI:
http://hdl.handle.net/10651/35745
ISBN:
978-84-692-6424-9
Patrocinado por:

The research reported in this paper has been supported in part under Spanish Ministerio de Educaci on y Ciencia (MEC) grant TIN2008-06247

Colecciones
  • Capítulos de libros [6535]
  • Informática [875]
  • Investigaciones y Documentos OpenAIRE [8420]
Ficheros en el ítem
Thumbnail
untranslated
Hierarchical classification using SVM.pdf (188.6Kb)
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image