Analyzing data from a fuzzy rating scale-based questionnaire: a case study
Publication date:
Publisher version:
Citación:
Descripción física:
Abstract:
Background: The fuzzy rating scale was introduced to cope with the imprecision of human thought and experience in measuring attitudes in many fields of Psychology. The flexibility and expressiveness of this scale allow us to properly describe the answers to many questions involving psychological measurement. Method: Analyzing the responses to a fuzzy rating scale-based questionnaire is indeed a critical problem. Nevertheless, over the last years, a methodology is being developed to analyze statistically fuzzy data in such a way that the information they contain is fully exploited. In this paper, a summary review of the main procedures is given. Results: The methods are illustrated by their application on the dataset obtained from a case study with nine-year-old children. In this study, children replied to some questions from the well-known TIMSS/PIRLS questionnaire by using a fuzzy rating scale. The form could be filled in either on the computer or by hand. Conclusions: The study indicates that the requirements of background and training underlying the fuzzy rating scale are not too demanding. Moreover, it is clearly shown that statistical conclusions substantially often differ depending on the responses being given in accordance with either a Likert scale or a fuzzy rating scale.
Background: The fuzzy rating scale was introduced to cope with the imprecision of human thought and experience in measuring attitudes in many fields of Psychology. The flexibility and expressiveness of this scale allow us to properly describe the answers to many questions involving psychological measurement. Method: Analyzing the responses to a fuzzy rating scale-based questionnaire is indeed a critical problem. Nevertheless, over the last years, a methodology is being developed to analyze statistically fuzzy data in such a way that the information they contain is fully exploited. In this paper, a summary review of the main procedures is given. Results: The methods are illustrated by their application on the dataset obtained from a case study with nine-year-old children. In this study, children replied to some questions from the well-known TIMSS/PIRLS questionnaire by using a fuzzy rating scale. The form could be filled in either on the computer or by hand. Conclusions: The study indicates that the requirements of background and training underlying the fuzzy rating scale are not too demanding. Moreover, it is clearly shown that statistical conclusions substantially often differ depending on the responses being given in accordance with either a Likert scale or a fuzzy rating scale.
ISSN:
Patrocinado por:
Principality of Asturias [GRUPIN14-101, E-33-2015-0040746, BP12012]; Spanish Ministry of Economy and Competitiveness [MTM2013-44212-P]
Collections
- Artículos [35511]
- Estadística e Investigación Operativa [274]