RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Capítulos de libros
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Gene clusters for bioactive natural products in actinomycetes and their use in combinatorial biosynthesis

Author:
Olano Álvarez, CarlosUniovi authority; Méndez Fernández, María del CarmenUniovi authority; Salas Fernández, José AntonioUniovi authority
Publication date:
2011
Editorial:

Caister Academic Press

Citación:
Olano, C., Méndez, C., y Salas, J.A Gene clusters for bioactive natural products in actinomycetes. En: Streptomyces Molecular Biology and Biotechnolog, Caister Academic Press , 2014, cap. 11, pp. 195-232
Descripción física:
pp. 195-232
Abstract:

During the last 25 years the isolation and characterization of gene clusters involved in the biosynthesis of actinomycete secondary metabolites has permitted the elucidation of the biochemical steps involved in the production of different structural classes of bioactive compounds. The characterization of these clusters has represented a great source of genes for the generation of novel ‘unnatural natural’ compounds by using combinatorial biosynthesis. The development of more effective methods for DNA sequencing, the improvement of targeted inactivation and heterologous host expression systems has strengthened the effectiveness of combinatorial biosynthesis. For these reasons combinatorial DNA technology has become during the last decade one of the most important approaches for generating chemical structural diversity and for increasing the number of potential useful compounds

During the last 25 years the isolation and characterization of gene clusters involved in the biosynthesis of actinomycete secondary metabolites has permitted the elucidation of the biochemical steps involved in the production of different structural classes of bioactive compounds. The characterization of these clusters has represented a great source of genes for the generation of novel ‘unnatural natural’ compounds by using combinatorial biosynthesis. The development of more effective methods for DNA sequencing, the improvement of targeted inactivation and heterologous host expression systems has strengthened the effectiveness of combinatorial biosynthesis. For these reasons combinatorial DNA technology has become during the last decade one of the most important approaches for generating chemical structural diversity and for increasing the number of potential useful compounds

URI:
http://hdl.handle.net/10651/31338
ISBN:
978-904455-77-6
Collections
  • Capítulos de libros [6513]
Files in this item
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image