RUO Home

Repositorio Institucional de la Universidad de Oviedo

View Item 
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
  •   RUO Home
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • View Item
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of RUOCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issnAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_issn

My Account

LoginRegister

Statistics

View Usage Statistics

RECENTLY ADDED

Last submissions
Repository
How to publish
Resources
FAQs

Localization and fuzzy classification of manufacturing defects in sheets of glass

Other title:

Localización y clasificación difusa de defectos de fabricación en láminas de vidrio

Author:
Junco Navascués, Luis AntonioUniovi authority; Sánchez Ramos, LucianoUniovi authority
Publication date:
1998
Editorial:

Universidad de Granada, Universitat Politècnica de Catalunya

Citación:
Mathware and Soft Computing, 5(2-3), p. 213-221 (1998)
Descripción física:
p. 213-221
Abstract:

Artificial Vision Systems are commonly used in industrial applications. The low cost of the equipment facilitates the development of new products. In this paper we describe the use of an artificial vision system in one of the phases of a quality control process related to automotive industries: the windshield manufacturing. We intend to localize and classify the defects that were originated while manufacturing the glass that forms the windshield. We will show that a fuzzy classifier, after being tuned with a genetic parameter adjustement procedure, outperforms a neural networks based classifier

Artificial Vision Systems are commonly used in industrial applications. The low cost of the equipment facilitates the development of new products. In this paper we describe the use of an artificial vision system in one of the phases of a quality control process related to automotive industries: the windshield manufacturing. We intend to localize and classify the defects that were originated while manufacturing the glass that forms the windshield. We will show that a fuzzy classifier, after being tuned with a genetic parameter adjustement procedure, outperforms a neural networks based classifier

URI:
http://hdl.handle.net/10651/30758
ISSN:
1134-5632
Collections
  • Artículos [37543]
  • Informática [872]
Files in this item
Thumbnail
untranslated
MATHWARE_1998_05_02-03_08.pdf (981.9Kb)
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadata
Show full item record
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
The content of the Repository, unless otherwise specified, is protected with a Creative Commons license: Attribution-Non Commercial-No Derivatives 4.0 Internacional
Creative Commons Image