RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Identifying market segments in beef: Breed, slaughter weight and ageing time implications

Autor(es) y otros:
Díez Peláez, JorgeAutoridad Uniovi; Coz Velasco, Juan José delAutoridad Uniovi; Bahamonde Rionda, AntonioAutoridad Uniovi; Sañudo, Carlos; Olleta, J. L.; Macie, S.; Campo, M. M.; Panea, Begoña; Albertí, P.
Palabra(s) clave:

Consumers preferences

Clustering

Machine learning

Artificial intelligence

Fecha de publicación:
2006
Editorial:

Elsevier

Versión del editor:
http://dx.doi.org/10.1016/j.meatsci.2006.05.017
Citación:
Meat Science, 74(4), p. 667–675 (2006); doi:10.1016/j.meatsci.2006.05.017
Descripción física:
p. 667-675
Resumen:

In this paper we propose a method to learn the reasons why groups of consumers prefer some beef products to others. We emphasise the role of groups since, from a practical point of view, they may represent market segments that demand different products. Our method starts representing people’s preferences in a metric space; there we are able to define a kernel based similarity function that allows a clustering algorithm to identify significant groups of consumers with homogeneous likes. Finally, in each cluster, we developed, with a support vector machine (SVM), a function that explains the preferences of those consumers grouped in the cluster. The method was applied to a real case of consumers of beef that tasted beef from seven Spanish breeds, slaughtered at two different weights and aged for three different ageing periods. Two different clusters of consumers were identified for acceptability and tenderness, but not for flavour. Those clusters ranked two very different breeds (Asturiana and Retinta) in opposite order. In acceptability, ageing period was appreciated in a different way. However, in tenderness most consumers preferred long ageing periods and heavier to lighter animals

In this paper we propose a method to learn the reasons why groups of consumers prefer some beef products to others. We emphasise the role of groups since, from a practical point of view, they may represent market segments that demand different products. Our method starts representing people’s preferences in a metric space; there we are able to define a kernel based similarity function that allows a clustering algorithm to identify significant groups of consumers with homogeneous likes. Finally, in each cluster, we developed, with a support vector machine (SVM), a function that explains the preferences of those consumers grouped in the cluster. The method was applied to a real case of consumers of beef that tasted beef from seven Spanish breeds, slaughtered at two different weights and aged for three different ageing periods. Two different clusters of consumers were identified for acceptability and tenderness, but not for flavour. Those clusters ranked two very different breeds (Asturiana and Retinta) in opposite order. In acceptability, ageing period was appreciated in a different way. However, in tenderness most consumers preferred long ageing periods and heavier to lighter animals

URI:
http://hdl.handle.net/10651/30621
ISSN:
0309-1740
DOI:
10.1016/j.meatsci.2006.05.017
Colecciones
  • Artículos [37534]
  • Informática [872]
Ficheros en el ítem
Thumbnail
untranslated
market_segments.pdf (177.3Kb)
Métricas
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image