RUO Principal

Repositorio Institucional de la Universidad de Oviedo

Ver ítem 
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
  •   RUO Principal
  • Producción Bibliográfica de UniOvi: RECOPILA
  • Artículos
  • Ver ítem
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

Listar

Todo RUOComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issnPerfil de autorEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasxmlui.ArtifactBrowser.Navigation.browse_issn

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

AÑADIDO RECIENTEMENTE

Novedades
Repositorio
Cómo publicar
Recursos
FAQs

Explaining the genetic basis of complex quantitative traits through prediction models

Autor(es) y otros:
Luaces Rodríguez, ÓscarAutoridad Uniovi; Quevedo Pérez, José RamónAutoridad Uniovi; Pérez Enciso, Miguel; Díez Peláez, JorgeAutoridad Uniovi; Coz Velasco, Juan José delAutoridad Uniovi; Bahamonde Rionda, AntonioAutoridad Uniovi
Fecha de publicación:
2010
Editorial:

Mary Ann Liebert

Citación:
Journal of Computational Biology, 17(12), p. 1711-1723 (2010)
Descripción física:
p. 1711-1723
Resumen:

The functional characterization of genes involved in many complex traits (phenotypes) of plants, animals or humans can be studied from a computational point of view using different tools. We propose prediction, from the Machine Learning point of view, to search for the genetic basis of these traits. However, trying to predict an exact value of a phenotype can be too difficult to obtain a confident model; but predicting an approximation, in the form of an interval of values, can be easier. We shall see that trustable and useful models can be obtained from this relaxed formulation. These predictors may be build as extensions of conventional classifiers or regressors. Although the prediction performance in both cases are similar, we show that from the classification field it is straightforward to obtain a principled and scalable method to select a reduced set of features in these genetic learning tasks. We conclude comparing the results so achieved in a real world data set of barley plants with those obtained with state-of-the-art methods used in the biological literature

The functional characterization of genes involved in many complex traits (phenotypes) of plants, animals or humans can be studied from a computational point of view using different tools. We propose prediction, from the Machine Learning point of view, to search for the genetic basis of these traits. However, trying to predict an exact value of a phenotype can be too difficult to obtain a confident model; but predicting an approximation, in the form of an interval of values, can be easier. We shall see that trustable and useful models can be obtained from this relaxed formulation. These predictors may be build as extensions of conventional classifiers or regressors. Although the prediction performance in both cases are similar, we show that from the classification field it is straightforward to obtain a principled and scalable method to select a reduced set of features in these genetic learning tasks. We conclude comparing the results so achieved in a real world data set of barley plants with those obtained with state-of-the-art methods used in the biological literature

URI:
http://hdl.handle.net/10651/29000
ISSN:
1066-5277
Colecciones
  • Artículos [37544]
  • Informática [875]
Ficheros en el ítem
Thumbnail
untranslated
jcb_barley.pdf (232.7Kb)
Compartir
Exportar a Mendeley
Estadísticas de uso
Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Página principal Uniovi

Biblioteca

Contacto

Facebook Universidad de OviedoTwitter Universidad de Oviedo
El contenido del Repositorio, a menos que se indique lo contrario, está protegido con una licencia Creative Commons: Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Creative Commons Image